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We propose a novel mathematical and numerical model for cardiac electromechanics, 
wherein biophysically detailed core models describe the different physical processes 
concurring to the cardiac function. The core models, once suitably approximated, are 
coupled by a computationally efficient strategy. Our model is based on: (1) the combination 
of implicit-explicit (IMEX) schemes to solve the different core cardiac models, (2) 
an Artificial Neural Network based model, that surrogates a biophysically detailed 
but computationally demanding microscale model of active force generation and (3) 
appropriate partitioned schemes to couple the different models in this multiphysics setting. 
We employ a flexible and scalable intergrid transfer operator, which allows to interpolate 
Finite Element functions between nested meshes and, possibly, among arbitrary Finite 
Element spaces for the different core models. Our core 3D electromechanical model of 
the left ventricle is coupled with a closed-loop 0D model of the vascular network (and 
the other cardiac chambers) by an approach that is energy preserving. More precisely, 
we derive a balance law for the mechanical energy of the whole circulatory network. 
This provides a quantitative insight into the energy utilization, dissipation and transfer 
among the different compartments of the cardiovascular network and during different 
stages of the heartbeat. On this ground, a new tool is proposed to validate some energy 
indicators adopted in the daily clinical practice. A further contribution of this paper is 
the proposition of a robust algorithm for the reconstruction of the stress-free reference 
configuration. This feature is fundamental to correctly initialize our electromechanical 
simulations. As a matter of fact, the geometry acquired from medical imaging typically 
refers to a configuration affected by residual internal stresses, whereas the elastodynamics 
equations that govern the mechanics core model are related to a stress-free configuration. 
To prove the biophysical accuracy of our computational model, we address different 
scenarios of clinical interest, namely by varying preload, afterload and contractility.
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1. Introduction

The coupling between the electric and mechanical activities of the heart is the fundamental physiological process at 
the basis of the cardiac function [1,2]. For this reason, numerical simulations of cardiac electromechanics are increasingly 
becoming the cornerstone of computational cardiology and precision medicine of the heart. These electromechanical models 
offer promising tools to assist clinicians in the decision-making process, by providing personalized assessments of various 
pathological conditions and related treatments. For instance, patient-specific computational models are built to address 
rhythm disorders [3]. Among them, an important role is played by cardiac arrhythmias, such as ventricular tachycardia and 
fibrillation [4], or cardiac dyssynchrony, such as left bundle branch block [5]. In other cases these cardiac in silico models, i.e. 
digital replicas of patients’ hearts, are used to study short-term and long-term structural remodeling, which may occur in 
presence of heart failure, ischemic and hypertrophic cardiomyopathy, and many other diseases [6–9]. Along this line, several 
mathematical and numerical models have been proposed in the literature, ranging from ventricles [10–15] and atria [16,17]
to four chamber human hearts [18–21].

In this paper we present a novel and comprehensive mathematical and numerical model of cardiac electromechanics. 
We consider a fully coupled model of the cardiac function, which results from the concerted action of several physical 
processes – electrophysiology, biochemistry, mechanics – interacting at different spatial and temporal scales [14,22–24]
ranging from nanometers to centimeters and from nanoseconds to seconds, respectively [1,25]. We describe all of these 
phenomena in terms of biophysically detailed models, written as systems of PDEs (partial differential equations) and ODEs 
(ordinary differential equations), which realize the coupling of electrophysiology, ionic model, active force generation at the 
cellular and tissue levels, passive mechanics of the myocardium, blood flow in the chambers and in the circulatory system. 
Among the original contributions of this paper, we present a 0D (zero-dimensional) hemodynamic model of the whole 
cardiovascular system, which is coupled with our 3D electromechanical model of specific cardiac chambers to form a closed-
loop 3D-0D circulation model. Such coupling is an essential step to provide physically meaningful numerical simulations, 
which are performed considering a 3D electromechanical description of the left ventricle only.

Among the different physical phenomena concurring to the heart function, the intrinsic complexity of the subcellular 
mechanisms underlying active force generation typically dictates the use of phenomenological models [26–28] or Monte 
Carlo approximations of physics-based models [29–31], which are however characterized by large computational costs. In 
our electromechanical model, instead, we rely on a physics-based model of force generation, with explicit representation 
of the cooperative interactions among the subcellular units [32]. As this model features more than 2’000 internal variables, 
we surrogate it thanks to the Machine Learning algorithm that we proposed in [33]. Specifically, we train – in an offline 
phase – a reduced-order model, based on Artificial Neural Networks (ANNs), that approximates within a prescribed accuracy 
the results of the original one. By using this ANN-based model (featuring only two internal variables) instead of the high-
fidelity one in the multiscale electromechanical simulation, we reduce the number of variables from more than 2’000 to 
only 2, with an overall relative error of the order of 10−3 [33].

We prove that our closed-loop circulation model satisfies a balance of mechanical energy. We provide a quantitative 
insight in the cardiac energy distribution by calculating the different terms of this balance during a heart beat. We highlight 
the features of different compartments during the different stages of the heartbeat, i.e. when energy is injected, dissipated 
or transformed. Thanks to our model we can also assess the validity of simplified relationships commonly used in the 
clinical practice to estimate the main indicators of heart energy distribution [34].

We prove that the coupling between the 3D electromechanical model and the 0D circulation model is consistent with the 
principles of energy conservation. Indeed, we impose a boundary condition at the base of the left ventricle that we purposely 
denote as energy-consistent boundary condition [33,35]. Moreover, we apply a boundary condition at the epicardium that 
keeps into account the effect of the pericardial sac [14,15].

The computational model for cardiac electromechanics presented in this paper relies on segregated schemes [36–38]. 
These schemes, also called partitioned, often suffer from instability issues [36,39–41], despite being computationally more 
attractive than monolithic schemes [15,37,42]. Nonetheless, our numerical approach enables to couple the core models 
describing the different physics in a numerically stable manner, yet allowing to adopt different resolutions in space and 
time to reflect their characteristic scales [12,14,43,44,2,45]. With this aim, we implement an efficient and flexible intergrid 
transfer operator [14,46,47] that allows to couple models defined on different computational meshes and possibly different 
Finite Element spaces. The single core models are approximated by suitable implicit-explicit (IMEX) schemes [48] in time, 
aimed at lowering the computational effort associated with each time step without introducing severe CFL restrictions on 
the time step size otherwise associated to fully explicit schemes [35]. The computational framework presented in this paper 
realizes a very favorable trade-off between the biophysical detail of the underlying mathematical models and computational 
efficiency of the corresponding solver. Mathematical rigor, model accuracy and computational efficiency are the landmarks 
of the proposed electromechanical solver.

We also couple the 3D and the 0D models [49,50] in the segregated scheme by means of a novel numerical approach. 
We reinterpret the cavity pressure of the left ventricle as a Lagrange multiplier to enforce a volumetric constraint to couple 
together the 0D circulation model and the 3D electromechanical model. We end up with a saddle-point structure for the 
mechanical problem, which is numerically solved using the Schur complement reduction [51]. Our scheme is numerically 
stable and can be applied to all the phases of the heart cycle (filling phase, ejection phase and isovolumetric contraction 
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Fig. 1. Representation of boundaries �
epi
0 , �base

0 and �endo
0 of the domain �0, given by the Zygote Solid 3D left ventricle [52].

and relaxation phases) without the need of switching among different 0D models and without considering any change in 
the parameters of the equations [11,14].

Looking towards the patient-specific customization of our model, we note that cardiac geometries are mostly acquired in 
vivo with imaging techniques. In this setting, atria and ventricles are loaded, mainly by the pressures acting on the endo-
cardium, and present residual internal stresses. Therefore, the stress-free configuration, to which the equations for cardiac 
electromechanics must refer, is not known a priori. As this is necessary to set the reference configuration for the mechani-
cal model, we formulate an inverse problem aimed at recovering such stress-free reference configuration starting from the 
geometry acquired from medical imaging. We also propose a novel and robust algorithm to solve this inverse problem. 
Nevertheless, its numerical resolution can be computationally demanding for highly refined meshes. For this reason, our 
algorithm for the recovery of the reference configuration is supplied by a projection technique that accurately retrieve the 
stress-free configuration from a coarser and independent representation of the computational domain.

We show the effectiveness of our mathematical and numerical approach by simulating the response of the electrome-
chanical model in some physiological and meaningful configurations, namely varying preload, afterload and contractility.

1.1. Paper outline

This paper is organized as follows. In Sec. 2 we describe the core cardiac models. In Sec. 3 we derive a balance of the 
mechanical energy for both the 0D blood circulation model and the 3D-0D electromechanical-circulation coupled model. In 
Sec. 4 we present the numerical discretization of the different core models and the strategy followed for their coupling. In 
Sec. 5 we illustrate our algorithm to recover the reference configuration from a stressed geometry. In Sec. 6 we present the 
numerical results. In particular, we perform different numerical tests by varying preload, afterload and contractility, thus 
showing the ability of our mathematical model to investigate different scenarios of clinical interest. Finally, in Sec. 7, we 
draw our conclusions and outlook on future research.

2. Mathematical models

We consider a computational domain �0 ⊂ R3, representing the 3D region occupied by the left ventricle (Fig. 1). We 
split the boundary of �0 into endocardium (�endo

0 ), epicardium (�epi
0 ) and ventricular base (�base

0 ), namely the artificial 
boundary located where the left ventricle geometry is cut.

In this paper, we consider a multiphysics and multiscale model of cardiac electromechanics made of five different blocks 
(henceforth denoted as core models) plus a coupling condition. The core models are associated with the different physical 
phenomena concurring – at different spatial and temporal scales – at the heart function. They correspond to the propagation 
of the electrical potential (E ) [53–56], ion dynamics (I ) [57–59], active contraction of cardiomyocytes (A ) [33,60–63], 
tissue mechanics (M ) [64,65] and blood circulation (C ) [49,50]. Finally, the volume conservation condition (V ) enables 
to consistently couple (M ) and (C ) core models. In Fig. 2 we depict the electric analog circuit corresponding to our 0D 
circulation model, along with the coupling with a 3D electromechanical description of the left ventricle.

The model features the following unknowns:

u : �0 × (0, T ) → R, w : �0 × (0, T ) → Rnw , z : �0 × (0, T ) → Rnz ,

s : �0 × (0, T ) → Rns , d : �0 × (0, T ) → R3, c1 : (0, T ) → Rnc ,

pLV : (0, T ) → R

(1)

where u denotes the transmembrane potential, w and z the ionic variables, s the states variables of the force generation 
model, d the mechanical displacement of the tissue, c1 is the state vector of the circulation models (pressures, volumes and 
3
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Fig. 2. 3D-0D coupling between the left ventricle 3D electromechanical model and the 0D model. The state variables corresponding to pressures and fluxes 
are depicted in orange and blue, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

fluxes in the different compartments of the vascular network) and pLV is the left ventricle pressure. The model reads as 
follows:

(E )

⎧⎨⎩ Jχm

[
Cm

∂u

∂t
+ Iion(u, w, z)

]
− ∇ · ( JF−1 DMF−T ∇u) = JχmIapp(t),(

JF−1 DMF−T ∇u
) · N = 0 on ∂�0 × (0, T ),

(2a)

in �0 × (0, T ), with u = u0 in �0 at time t = 0.

(I )

⎧⎪⎨⎪⎩
∂ w

∂t
− H(u, w) = 0,

∂z

∂t
− G(u, w, z) = 0,

(2b)

in �0 × (0, T ), with w = w0 and z = z0 in �0 at time t = 0.

(A )
∂s

∂t
= K (s, [Ca2+]i, S L), (2c)

in �0 × (0, T ), with s(0) = s0 in �0 at time t = 0.

(M )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρs
∂2d

∂t2
− ∇ · P(d, Ta(s)) = 0,

P(d, Ta(s))N + Kepid + Cepi ∂d

∂t
= 0 on �

epi
0 × (0, T ),

P(d, Ta(s))N = pLV(t) | JF−T N|vbase on �base
0 × (0, T ),

P(d, Ta(s))N = −pLV(t) JF−T N on �endo
0 × (0, T ),

(2d)

in �0 × (0, T ), with d = d0 and 
∂d = ḋ0 in �0 at time t = 0.

∂t

4
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(C )
dc1(t)

dt
= D̃(t, c1(t), pLV(t)), (2e)

for t ∈ (0, T ), with c1(0) = c1,0.

(V ) V 0D
LV (c1(t)) = V 3D

LV (d(t)), (2f)

for t ∈ (0, T ).
Hereafter we will denote the pair (E )–(I ) as cardiac electrophysiology. In the following sections, we will detail the 

different core models, along with the meaning of all the variables, and their coupling.

2.1. Electrophysiology (E )–(I )

We model the propagation of transmembrane potential u with the monodomain equation (E ), a diffusion-reaction PDE 
describing the electric activity of cardiac muscle cells [53–56]. We couple the monodomain equation with the ten Tusscher-
Panfilov ionic model, that we denote by TTP06, due to our focus on the physiological ventricular activity [59]. This model 
enables to describe the dynamics of ionic fluxes across the cell membrane in an accurate and detailed manner, which is 
essential for electromechanical coupling [66].

In the electrophysiological model (E )–(I ), Cm is the total membrane capacitance and χm is the area of cell mem-
brane per tissue volume. The vector w = {w1, w2, ..., wnw } expresses nw recovery (or gating) variables, which play the 
role of density functions and model the fraction of open ionic channels across the membrane of a single cell. The vector 
z = {z1, z2, ..., znz } defines nz concentration variables of specific ionic species (among which intracellular calcium ions con-
centration [Ca2+]i , which plays a crucial role in the mechanical activation). H and G are suitably defined vector-valued 
functions, depending on the specific ionic model at hand.

The transmission of the electrical potential u through the so-called gap junctions is described in (E ) by means of the 
diffusion term ∇ · ( J F−1 DMF−T ∇u). In this term, DM is the diffusion tensor in the deformed configuration (material coordi-
nates). To account for the dependence of the electrical properties on the tissue on its stretch (mechano-electrical feedback, 
see e.g. [53,54]), we introduce the deformation gradient tensor F = I + ∇d, where d denotes the displacement of the my-
ocardium, and the deformation Jacobian J = det(F), and we compute the pull-back of DM in the reference configuration.

The applied current Iapp(t) mimics the effect of the Purkinje network [67–69], which we do not model in this context, by 
triggering the action potential at specific locations of the myocardium. The ionic current Iion(u, w, z) models the multiscale 
effects from the cellular level up to the tissue one and strictly depends on the selected ionic model. A no-flux (Neumann) 
boundary condition represents an electrically isolated domain.

To reduce the number of parameters, we rescale the first equation in (E ) by C−1
m χ−1

m , yielding:

J

[
∂u

∂t
+ Ĩion(u, w, z)

]
= ∇ · ( JF−1 D̃MF−T ∇u) + J Ĩapp(t), (3)

where Ĩion := C−1
m Iion, D̃M = C−1

m χ−1
m DM and Ĩapp := C−1

m Iapp. We formulate the diffusion tensor as follows:

DM = σl
Ff0 ⊗ Ff0

||Ff0||2 + σt
Fs0 ⊗ Fs0

||Fs0||2 + σn
Fn0 ⊗ Fn0

||Fn0||2 ,

being f0 the vector field expressing the fiber direction, s0 the vector field containing the sheet normal direction, n0 the 
vector field that indicates the crossfiber direction, and σl, σt, σn ∈ R+ longitudinal, transversal and normal conductivities, 
respectively [53,70]. f0, s0 and n0 account for the anisotropic properties of the cardiac tissue. This local orthonormal coor-
dinate system defined at each point of the computational domain �0 can be generated using rule-based algorithms [71–73]
and has a significant role in the electromechanical framework [74].

2.2. Active force generation (A )

Heart contraction is the result of mechano-chemical interactions among the contractile proteins actin and myosin, taking 
place at the scale of the sarcomeres, the fundamental contractile unit of the cardiac muscle [1,25,35,60,75]. To model such 
complex mechanisms, we consider the model that we proposed in [32], henceforth denoted as RDQ18 model. This model is 
based on a biophysically detailed description of the sarcomeric proteins with an explicit representation of the cooperative 
nearest-neighboring interactions, responsible for the high sensitivity of the cardiac contractile apparatus to changes in cal-
cium concentration, which is one of the ionic species modelled by the TTP06 ionic model. Thanks to the spatially-explicit 
representation of the sarcomere filaments, the RDQ18 model also incorporates the feedback of the sarcomere shortening, 
resulting from the muscle contraction, on the force generation mechanism itself. This is of outmost importance since the 
regulation due to the sarcomere length (S L) constitutes the microscopical basis of the well-known Frank-Starling mechanism 
at the macroscale level; in practice, higher end-diastolic volumes translate into higher stroke volumes [1].

The RDQ18 model is a system of ODEs in the form of (A ), where the vector s collects the variables of the RDQ18 model 
and where K is a suitable function defined in [32] (we remark that K does not involve derivatives of s with respect to the 
5
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spatial variable). Within a multiscale framework, the RDQ18 model is ideally set at every point of the computational domain 
�0. The input variable [Ca2+]i is provided by the TTP06 ionic model in each point of the domain, while S L is provided by 
the solution of the mechanical model, as we will explain later in Sec. 2.3.

The output of the RDQ18 model is the permissivity P ∈ [0, 1], obtained as a function of the states s (i.e. P = G(s), 
where G is a linear function defined in [32]). The permissivity represents the fraction of contractile units being in the force-
generating state. Hence, the effective active tension is given by Ta = T max

a P , where T max
a denotes the tension generated 

when all the contractile units are generating force (i.e. for P = 1).
The RDQ18 model accurately describes the microscopic force generation mechanisms. This accuracy results in a higher 

computational cost compared to phenomenological models typically used for multiscale simulations (see e.g. [26,27]). To 
overcome this issue, in the multiscale model of electromechanics we take advantage of the model based on Artificial Neural 
Networks (ANNs) presented in [33]. This model is a fast surrogate of the RDQ18 model (high-fidelity model), learned from 
a collection of pre-computed simulations obtained with the RDQ18 model itself, thanks to the Machine Learning algorithm 
that we proposed in [76]. Such reduced-order model is written in the same form of (A ). However, the state vector s of 
ANN-based model only contains two variables, instead of the more than 2’000 variables of the high fidelity model. This 
significantly reduces the computational costs associated with its numerical approximation (both in terms of CPU time and 
memory storage), at the price of only a small approximation, as the overall relative error between the results of the high-
fidelity and of the reduced-order models is of the order of 10−3 [33]. In this way we obtain an excellent trade-off between 
computational cost and biophysical accuracy of the results.

2.3. Active and passive mechanics (M )

We describe the dynamics of the tissue displacement d by the momentum conservation equation (M ) (see e.g. [65]). 
The Piola-Kirchhoff stress tensor P = P(d, Ta) incorporates both passive and active mechanics of the tissue. Under the hy-
perelasticity assumption, once the strain energy density function W : Lin+ → R is introduced, the passive part of the 
Piola-Kirchhoff stress tensor is obtained as ∂

∂FW(F). In conclusion, the full Piola-Kirchhoff tensor reads:

P(d, Ta) = ∂W(F)

∂F
+ Ta

Ff0 ⊗ f0√
I4 f

, (4)

where the first term stands as the passive part, while the latter as the active one of the tensor P, and where Ta denotes the 
active tension, provided the force generation model of Sec. 2.2. I4 f = Ff0 · Ff0 is a measure of the tissue stretch along the 
fiber direction.

Several models have been proposed in literature to describe the anisotropic nature of the cardiac muscle tissue. In this 
paper, we consider the Guccione strain energy density function [64,77], that reads W(F) = C

2

(
eQ − 1

)
, with

Q = bff E2
ff + bss E2

ss + bnn E2
nn + bfs

(
E2

fs + E2
sf

)
+ bfn

(
E2

fn + E2
nf

)
+ bsn

(
E2

sn + E2
ns

)
, (5)

where Eab = Ea0 · b0 for a, b ∈ { f , s, n} are the entries of E = 1
2 (C − I), i.e. the Green-Lagrange strain energy tensor, being 

C = FT F the right Cauchy-Green deformation tensor. We consider a further term, defined as Wvol( J ) = B
2 ( J − 1) log( J ), 

convex in J and such that J = 1 is the global minimum, which penalizes large variations of volume, thus realizing a 
(weakly) incompressible constraint [78–80]; B ∈R+ represents the bulk modulus.

To model the interaction of the left ventricle with the pericardium [14,15,13,8], we impose at the epicardial boundary 
�

epi
0 the generalized Robin boundary condition PN + Kepid + Cepi ∂d

∂t = 0, by defining the following tensors

Kepi = K epi
⊥ (N ⊗ N) + K epi

‖ (I − N ⊗ N),

Cepi = Cepi
⊥ (N ⊗ N) + Cepi

‖ (I − N ⊗ N),

where the constants K epi
⊥ , K epi

‖ , Cepi
⊥ , Cepi

‖ ∈ R+ are local values of stiffness and viscosity of the epicardial tissue in the 
normal or tangential directions, respectively. The tangential components are aimed at constraining the rigid rotations of the 
ventricle around the apico-basal axis, with respect to which the structure would be under-constrained. They surrogate the 
action of the right ventricle, main veins and arteries, which oppose the rigid rotations of the left ventricle while allowing 
torsion. In our experience, coefficients in the tangential direction one order of magnitude smaller than the normal direc-
tion are sufficient to constrain rigid rotations without affecting the twisting (see Appendix A). At the base �base

0 , we set 
the energy-consistent boundary condition PN = pLV(t) | J F−T N| vbase, originally proposed in [33], that provides an explicit 
expression for the stresses located at the artificial boundary �base

0 , where we have defined the vector

vbase =
∫
�endo

0
JF−T Nd�0∫

base | JF−T N|d�0
.

�0

6
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As we later show (Sec. 3.2), this formulation allows to straightforwardly couple the 3D mechanical model with a 0D model 
of the whole circulation in an energetically consistent manner. Finally, at the endocardium �endo

0 , the boundary condition 
PN = −pLV(t) J F−T N accounts for the pressure pLV(t) exerted by the blood contained in the ventricular chamber, modeled 
through 0D closed-loop circulation model.

As anticipated, the mechanical model (M ) has a feedback on the force generation model of (A ), as d determines the 
local sarcomere length S L. More precisely, since sarcomeres are aligned with the muscle fibers f0, the local sarcomere length 
S L is given as S L = S L0

√
I4 f , where S L0 denotes the sarcomere length at rest.

2.4. Blood circulation (C )

To model the hemodynamics of the whole circulatory network, we propose a lumped-parameter closed-loop model, in-
spired by previous models available in literature [49,50]. Systemic and pulmonary circulations are modeled with resistance-
inductance-capacitance (RLC) circuits, one for the arterial part and the other one for the venous part. The four chambers 
are modeled by time-varying elastance elements, whereas the four valves are represented as non-ideal diodes. Our 0D 
closed-loop circulation model reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV LA(t)

dt
= Q PUL

VEN(t) − Q MV(t),
dV LV(t)

dt
= Q MV(t) − Q AV(t), (a)

dV RA(t)

dt
= Q SYS

VEN(t) − Q TV(t),
dV RV(t)

dt
= Q TV(t) − Q PV(t), (b)

CSYS
AR

dpSYS
AR (t)

dt
= Q AV(t) − Q SYS

AR (t), CSYS
VEN

dpSYS
VEN(t)

dt
= Q SYS

AR (t) − Q SYS
VEN(t), (c)

CPUL
AR

dpPUL
AR (t)

dt
= Q PV(t) − Q PUL

AR (t), CPUL
VEN

dpPUL
VEN(t)

dt
= Q PUL

AR (t) − Q PUL
VEN(t), (d)

LSYS
AR

RSYS
AR

dQ SYS
AR (t)

dt
= −Q SYS

AR (t) − pSYS
VEN(t) − pSYS

AR (t)

RSYS
AR

, (e)

LSYS
VEN

RSYS
VEN

dQ SYS
VEN(t)

dt
= −Q SYS

VEN(t) − pRA(t) − pSYS
VEN(t)

RSYS
VEN

, (f)

LPUL
AR

RPUL
AR

dQ PUL
AR (t)

dt
= −Q PUL

AR (t) − pPUL
VEN(t) − pPUL

AR (t)

RPUL
AR

, (g)

LPUL
VEN

RPUL
VEN

dQ PUL
VEN(t)

dt
= −Q PUL

VEN(t) − pLA(t) − pPUL
VEN(t)

RPUL
VEN

, (h)

(6)

with t ∈ (0, T ), where:

pLV(t) = pEX(t) + ELV(t)
(

V LV(t) − V 0,LV
)
, (7a)

pLA(t) = pEX(t) + ELA(t)
(

V LA(t) − V 0,LA
)
, (7b)

pRV(t) = pEX(t) + ERV(t)
(

V RV(t) − V 0,RV
)
, (7c)

pRA(t) = pEX(t) + ERA(t)
(

V RA(t) − V 0,RA
)
, (7d)

Q MV(t) = pLA(t) − pLV(t)

RMV(pLA(t), pLV(t))
, Q AV(t) = pLV(t) − pSYS

AR (t)

RAV(pLV(t), pSYS
AR (t))

, (7e)

Q TV(t) = pRA(t) − pRV(t)

RTV(pRA(t), pRV(t))
, Q PV(t) = pRV(t) − pPUL

AR (t)

RPV(pRV(t), pPUL
AR (t))

, (7f)

with t ∈ (0, T ). In this model, pLA(t), pRA(t), pLV(t), pRV(t), V LA(t), V RA(t), V LV(t) and V RV(t) refer to pressures and vol-
umes in left atrium, right atrium, left ventricle and right ventricle, respectively. The variables Q MV(t), Q AV(t), Q TV(t) and 
Q PV(t) indicate the flow rates through mitral, aortic, tricuspid and pulmonary valves, respectively. Moreover, pSYS

AR (t), Q SYS
AR (t), 

pSYS
VEN(t) and Q SYS

VEN(t) express pressures and flow rates of the systemic circulation (arterial and venous). Similarly, pPUL
AR (t), 

Q PUL
AR (t), pPUL

VEN(t) and Q PUL
VEN(t) define pressures and flow rates of the pulmonary circulation (arterial and venous). pEX(t) rep-

resents the pressure exerted outside the heart by the surrounding organs and respiration. In this paper, we set for simplicity 
pEX(t) ≡ 0. We remark that, in case pEX(t) �= 0, the pericardium boundary conditions could be modified accordingly to ac-
count for pEX(t) �= 0. Time varying ELA(t), ELV(t), ERA(t), ERV(t) are the analytically prescribed elastances of the four cardiac 
7
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chambers calibrated on a physiological basis, with values ranging from Epass
LA , Epass

LV , Epass
RA , Epass

RV – when the chambers are at 
rest – to (Epass

LA + Eact,max
LA ), (Epass

LV + Eact,max
LV ), (Epass

RA + Eact,max
RA ), (Epass

RV + Eact,max
RV ) – when the chambers are fully contracted. 

More precisely, we consider the analytically prescribed activation transient

φ(t, tC, tR, TC, TR) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2

[
1 − cos

(
π

TC
mod(t − tC, THB)

)]
if 0 ≤ mod(t − tC, THB) < TC,

1

2

[
1 + cos

(
π

TR
mod(t − tR, THB)

)]
if 0 ≤ mod(t − tR, THB) < TR,

0 otherwise,

(8)

where tC and tR are the times in which contraction and relaxation begin, respectively; TC and TR are the durations of 
contraction and relaxation, respectively; THB is the heartbeat period. Notice that tR = tC + TC, for consistency. Then, we 
define the time-varying elastances of the four cardiac chambers as

E i(t) = Epass
i + Eact,max

i φ(t, ti
C, ti

R, T i
C, T i

R), for i ∈ {LA, LV,RA,RV}. (9)

Finally, RMV(p1, p2), RAV(p1, p2), RTV(p1, p2) and RPV(p1, p2) define the behavior of valves as diodes, according to the 
following relationship:

R i(p1, p2) =
{

Rmin, p1 < p2

Rmax, p1 ≥ p2
for i ∈ {MV,AV,TV,PV},

where p1 and p2 denote the pressures ahead and behind the valve leaflets with respect to the flow direction, whereas 
Rmin and Rmax are the minimum and maximum resistance of the valves. For an idealized valve, one would have Rmin = 0
and Rmax = +∞ instead. By setting Rmin > 0, one has dissipation of mechanical energy taking place when the blood flows 
through the opened valve (see Sec. 3); we set Rmax < +∞ sufficiently large so that blood leakage when the valve is closed 
is negligible.

Hereafter, for the sake of brevity, Eqs. (6)–(7) will be expressed in the following compact form:⎧⎪⎪⎨⎪⎪⎩
dc1(t)

dt
= D(t, c1(t), c2(t)) t ∈ (0, T ],

c2(t) = W (t, c1(t)) t ∈ [0, T ],
c1(0) = c1,0,

(10)

where:

c1(t) = (V LA(t), V LV(t), V RA(t), V RV(t), pSYS
AR (t), pSYS

VEN(t), pPUL
AR (t), pPUL

VEN(t), Q SYS
AR (t), Q SYS

VEN(t), Q PUL
AR (t), Q PUL

VEN(t))T ,

c2(t) = (pLV(t), pLA(t), pRV(t), pRA(t), Q MV(t), Q AV(t), Q TV(t), Q PV(t))T ;
D(t, c1(t), c2(t)) collects the whole r.h.s. of Eq. (6), while c2(t) = W (t, c1(t)) stands as a compact notation for Eq. (7), 
rewritten in explicit form with respect to the variable c2.

2.5. 3D-0D coupling (V )

In Eq. (10) each cardiac chamber is modeled as a time-varying elastance element, that is a 0D simplified model. In this 
paper, we employ this 0D circulation model in conjunction with the 3D left ventricular model given by (E )–(I )–(A )–(M ). 
With this goal, we remove from the circulation model the time-varying elastance element associated with the left ventricle, 
and we replace it with the 3D electromechanical model. Hence, the pressure-volume relationship between pLV and V LV is 
no longer prescribed by Eq. (7a), but by the resolution of the 3D electromechanical model. The resulting 3D–0D coupled 
model (depicted in Fig. 2) must satisfy at each time t ∈ (0, T ) the volume-consistency coupling condition V 0D

LV (c1(t)) =
V 3D

LV (d(t)), that we denote by (V ), where V 0D
LV (c1(t)) = V LV(t) represents the left ventricle volume in the 0D circulation 

model. V 3D
LV (d(t)) represents the left ventricle volume in the 3D model and it is computed as:

V 3D
LV (d(t)) =

∫
�endo

0

J (t) ((h ⊗ h) (x + d(t) − b)) · F−T (t)N d�0,

where h is a vector orthogonal to the left ventricle centerline (i.e. lying on the left ventricle base) [81]. Subtracting to the 
space coordinate x + d(t) that of a point b, lying inside the left ventricle, improves the accuracy of the formula when the 
ventricular base changes its orientation.

Having introduced an additional scalar equation, i.e. (V ), we expect an additional unknown: it is in fact pLV, which is 
not determined by Eq. (7a) anymore. Rather, it acts as a Lagrange multiplier enforcing the constraint (V ).
8
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Fig. 3. Sketch of the strategy used to initialize the simulation. The gray line represents the so-called Klotz curve [82], that is the pressure-volume relationship 
of the relaxed ventricle. The black line represents the pressure-volume loop of the left ventricle.

Hence, we define the “reduced” vector c̃2 such that cT
2 = (pLV, ̃cT

2 ), so that we can rewrite Eqs. (7a)–(7f) as c̃2(t) =
W̃ (t, c1(t), pLV(t)). This allows to write the “reduced” version of Eq. (10) as (C ) where we have defined

D̃(t, c1, pLV) := D

(
t, c1,

(
pLV

W̃ (t, c1, pLV)

))
.

In conclusion, we obtain the coupled 3D-0D model reported in Eq. (2). We remark that the number of equations balances 
with the number of unknowns defined in (1): we have 1 + nw + nz + ns + 3 unknowns (respectively, equations) defined in 
�0 × (0, T ) and nc + 1 unknowns (respectively, equations) defined in (0, T ).

2.6. Reference configuration and initial displacement

In the mechanical model (M ), the stress-strain relationship (4) is referred to the natural stress-free configuration �0. 
However, the cardiac chambers are never unloaded during the cardiac cycle.

Let us denote by �̃ a medical image to generate the LV. This configuration presents residual stresses, since an internal 
pressure pLV �= 0 is acting at every stage of the heartbeat. Therefore, in the preprocessing stage, we need to recover the 
reference configuration �0 from �̃.

Our strategy to initialize the numerical simulation is sketched in Fig. 3. As a first step, starting from the geometry 
acquired from medical imaging �̃, we recover the stress-free reference configuration �0, by virtually deflating the left 
ventricle, previously subject to an internal pressure ̃p. Then, as a second step, we inflate the left ventricle again, by applying 
the end diastolic pressure pED at the endocardium. The last part of diastole is chosen for the following reasons:

• The diastolic phase is typically captured in the clinical practice of cardiac imaging.
• As it will be shown in Sect. 2.6.1, we consider a quasi-static approximation of the mechanical problem, which is more 

legitimate during the last part of diastole, when ventricular filling has slowed before atrial contraction.
• It is less challenging to deflate the left ventricle from a low pressure regime rather than starting from the systolic phase 

(i.e. mid to high pressure regime).

In the next sections we give the mathematical details behind the steps reported in Fig. 3.

2.6.1. Recovering the reference configuration
We assume that the configuration �̃ occurs during diastole, when the left ventricle is loaded by a pressure pLV = p̃ and 

only a residual active tension Ta = T̃a > 0 acts. By adopting a quasi-static assumption (motivated by the slow movement 
of the myocardium during the final part of diastole), the tissue displacement is given by the solution of the following 
differential problem: find d such that
9
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ · P(d, Ta) = 0 in �0,

P(d, Ta)N + Kepid = 0 on �
epi
0 ,

P(d, Ta)N = pLV | JF−T N|vbase on �base
0 ,

P(d, Ta)N = −pLV JF−T N on �endo
0 .

(11)

Eq. (11) is derived from (M ) by setting to zero the time-dependent terms. Thus, to recover the coordinate x0 of the 
configuration �0 we need to solve the following inverse problem: find the domain �0 such that, if we displace x0 by the 
solution d = deq(x0, pLV, Ta) of Eq. (11) obtained for pLV = p̃ and Ta = T̃a, we get the coordinate x̃ of the domain �̃ (i.e. 
x̃ = x0 + d). In Sec. 5 we present an algorithm for its numerical solution.

2.6.2. Finding the initial displacement
After the recovery of the reference configuration �0, we set pLV = pED. Then, we solve again Eq. (11). In this manner, we 

obtain the end-diastolic configuration of the LV, i.e. dED. Hence, we set d0 = dED in (M ).

3. On the balance of mechanical energy of the electromechanical model

We derive a balance of the mechanical energy for the whole cardiovascular system. In particular, we analyze how me-
chanical energy is injected, dissipated and transferred in the different compartments of the heart and in both systemic and 
pulmonary circulation. First, in Sec. 3.1, we consider the 0D closed-loop circulation model (C ) introduced in Sec. 2.4. Then, 
in Sec. 3.2 we focus on the coupled 3D-0D model (M )–(V )–(C ).

3.1. Energy balance for the 0D model

To define the terms associated with the work performed by the cardiac chambers, we write E i(t) = Epass
i + Eact

i (t) (for 
i ∈ {LA, LV, RA, RV}), where Epass

i is the passive elastance of the tissue (i.e. the elastance when the tissue is not activated) 
and Eact

i is instead the active component of the elastance.

Definition 1. We define the total mechanical energy of the whole 0D circulation model as

M(t) = ELA(t) + ELV(t) + ERA(t) + ERV(t) + ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t),

where, for i ∈ {LA, LV, RA, RV}, j ∈ {AR, VEN} and k ∈ {SYS, PUL}:

• Ei(t) = 1
2 Epass

i

(
V i(t) − V 0,i

)2 is the elastic energy stored by a cardiac chamber;

• Ek
j (t) = 1

2 Ck
j

(
pk

j (t)
)2

is the elastic energy stored in the vascular network, due to vessels compliance;

• Kk
j (t) = 1

2 Lk
j

(
Q k

j (t)
)2

is the kinetic energy related to the blood flow inertia.

We provide now a deeper explanation of the definition of Ek
j . Let us consider, as an example, ESYS

AR . First, we notice that 
Q AV(t) − Q SYS

AR (t) is the net blood flux passing through the arterial systemic network. Hence, by denoting with V SYS
AR (t) the 

blood volume stored in the arterial systemic network, we have:

dV SYS
AR (t)

dt
= Q AV(t) − Q SYS

AR (t).

By comparing the latter equation to the first equation of (6c) we get:

pSYS
AR (t) = 1

CSYS
AR

(
V SYS

AR (t) − V SYS
0,AR

)
,

where V SYS
0,AR is the blood volume stored within the arterial systemic network when the pressure is null. In conclusion, we 

have ESYS
AR (t) = (2 CSYS

AR )−1
(

V SYS
AR (t) − V SYS

0,AR

)2
, where 1/CSYS

AR is the arterial systemic network elastance (the inverse of the 
compliance), coherently with the definition of ELA.

Definition 2. We define the power generated by active contraction, due to ATP consumption occurring at the cellular level, 
as


act(t) = 
act(t) + 
act(t) + 
act(t) + 
act(t),
LA LV RA RV

10
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where 
act
i (t) = −Eact

i (t) 
(

V i(t) − V 0,i
) dV i

dt (t) is the power exerted by the active contraction of a cardiac chamber (for i ∈
{LA, LV, RA, RV}).

Definition 3. We define the power dissipated within the 0D circulation model by viscous forces as the blood flows through 
the valves and the vascular network as


diss(t) = 
MV(t) + 
AV(t) + 
TV(t) + 
PV(t) + 
SYS
AR (t) + 
SYS

VEN(t) + 
PUL
AR (t) + 
PUL

VEN(t),

where:

• the power dissipated by the blood flux through the cardiac valves:


MV(t) = − (pLA(t) − pLV(t))2

RMV(pLA(t), pLV(t))
, 
AV(t) = −

(
pLV(t) − pSYS

AR (t)
)2

RAV(pLV(t), pSYS
AR (t))

,


TV(t) = − (pRA(t) − pRV(t))2

RTV(pRA(t), pRV(t))
, 
PV(t) = −

(
pRV(t) − pPUL

AR (t)
)2

RPV(pRV(t), pPUL
AR (t))

;
(12)

• 
k
j (t) = −Rk

j

(
Q k

j (t)
)2

, that is the power dissipated by the arterial systemic network (for j ∈ {AR, VEN} and k ∈
{SYS, PUL}).

We remark that all the terms in Eq. (12) are nonpositive.

Definition 4. We define the power due to the action of the external pressure pEX on the myocardium as


ex(t) = 
ex
LA(t) + 
ex

LV(t) + 
ex
RA(t) + 
ex

RV(t),

where 
ex
i (t) = −pEX(t) dV i

dt (t) is the power exerted by the external pressure pEX(t) acting on a cardiac chamber (for i ∈
{LA, LV, RA, RV}).

We have the following result.

Proposition 1. The solution of Eq. (10) for the whole 0D circulation model satisfies the energy balance

d

dt
M(t) = 
act(t) + 
diss(t) + 
ex(t), (13)

whose terms are defined in Definitions 1–4.

Proof. To derive Eq. (13) we consider, as illustrative examples, a representative cardiac chamber, a cardiac valve and a 
vascular branch. In fact, similar calculations will apply to the other chambers, valves and vascular compartments.
Energy balance of the cardiac chambers. Let us consider for now the left atrium (LA). By multiplying Eq. (7b) by dV LA(t)

dt and 
thanks to Eq. (6a), we get:

pLA(t)(Q PUL
VEN(t) − Q MV(t)) = d

dt
ELA(t) − 
act

LA (t) − 
ex
LA(t). (14)

Energy balance of the cardiac valves. From (7e) we obtain

(pLA(t) − pLV(t))Q MV(t) = −
MV(t). (15)

Similar considerations hold for the other valves.
Energy balance of the peripheral blood reservoirs. By multiplying the first equation of (6c) by pSYS

AR (t), we get:

pSYS
AR (t)Q AV(t) − pSYS

AR (t)Q SYS
AR (t) = d

dt
ESYS

AR (t) (16)

Energy balance of the peripheral blood conducting system. By multiplying (6e) by RSYS
AR Q SYS

AR (t), we get:

pSYS
AR (t)Q SYS

AR (t) − pSYS
VEN(t)Q SYS

AR (t) = d

dt
KSYS

AR (t) − 
SYS
AR (t). (17)

Total balance. By proceeding as above for the other cardiac chambers, valves and circulation systems, and summing up the 
resulting equations, we obtain Eq. (13). This completes the proof. �
11
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Each of the four terms of Eq. (13) represents the result of the sum of different contributions, associated with the four 
chambers, the four valves and the different compartments of the vascular network (systemic and pulmonary, arterial and 
venous). The total work performed in a time interval [0, T ] is obtained by integrating the corresponding power over time, 
according to the following definition.

Definition 5. Let us consider a time horizon T > 0. The total work performed by active and dissipative forces in the time 
interval [0, T ] are defined as

W act = ∫ T
0 
act(t)dt, W diss = ∫ T

0 
diss(t)dt,

respectively.

When the heart rhythm has reached a periodic regime, it carries out its function alongside a cyclical path. In this case, 
the work balance of the following proposition holds.

Proposition 2. Let us suppose that pEX(t) is constant in time. Then, periodic solutions of Eq. (10) (i.e. with c1(0) = c1(T )) satisfy

W act + W diss = 0. (18)

Proof. We integrate the energy balance of Eq. (13) over a cardiac cycle [0, T ]. Thanks to the periodicity assumption, the 
contribution of the mechanical energy term M is null. Moreover, it is easy to show that the term 
ex(t) is conservative 
and hence its contribution over [0, T ] is also null. �

Therefore, when the heart is functioning in a periodic regime, the work performed by the contraction of the four 
chambers balances the energy dissipated by the four valves and by the blood flux through the systemic and pulmonary 
circulations.

3.2. Energy balance of the 3D-0D coupled model

Energy balance of the 3D left ventricle model By multiplying the first equation of (M ) by ∂d
∂t and integrating over �0 we 

obtain:∫
�0

ρs
∂2d

∂t2
· ∂d

∂t
dx +
∫
�0

P(d, Ta) : ∇
(

∂d

∂t

)
dx =
∫

∂�0

P(d, Ta)N · ∂d

∂t
d�0. (19)

By substituting the boundary conditions of (M ) into (19), we obtain the following energy balance for the 3D left ventricle 
model:

d

dt
KLV,3D(t) + d

dt
ELV,3D(t) = 
act

LV,3D(t) + 
diss
LV,3D(t) + 


press
LV,3D(t). (20)

This relation reveals the mutual balance of:

• the kinetic energy associated with the motion of the LV:

KLV,3D(t) = 1

2

∫
�0

ρs

∣∣∣∣∂d

∂t

∣∣∣∣2 dx;

• the elastic energy internally stored by the left ventricle muscle and by the elastic components of the surrounding 
tissues:

ELV,3D(t) =
∫
�0

W(F)dx + 1

2

∫
�

epi
0

[
K epi

⊥ |d · N|2 + K epi
‖ |(I − N ⊗ N)d|2

]
d�0,

where the displacement at the epicardium is split into the normal |d · N| and tangent |(I − N ⊗ N)d| component;
• the power exerted by the active contraction of the LV:


act
LV,3D(t) = −

∫
Ta

Ff0 ⊗ f0√
I4 f

: ∇
(

∂d

∂t

)
dx;
�0

12
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• the power dissipated by the interaction with the pericardium:


diss
LV,3D(t) = −

∫
�

epi
0

[
Cepi

⊥

∣∣∣∣∂d

∂t
· N

∣∣∣∣2 + Cepi
‖

∣∣∣∣(I − N ⊗ N)
∂d

∂t

∣∣∣∣2
]

d�0 ≤ 0,

∀t , which is a nonpositive term;
• the power exchanged with the blood contained in the left ventricle cavity, by means of the action of pressure pLV(t) on 

the endocardium:



press
LV,3D(t) = pLV(t)

⎡⎢⎢⎣ ∫
�endo

0

JF−T N · ∂d

∂t
d�0 −

∫
�base

0

| JF−T N|∂d

∂t
d�0 · vbase

⎤⎥⎥⎦ .

As in [33], the term in square brackets corresponds to the time derivative of the left ventricle volume, that is 
press
LV,3D(t) =

pLV(t) d
dt V 3D

LV (d(t)). Then, in virtue of the coupling condition (V ) and by Eq. (6a), we obtain 
press
LV,3D(t) = pLV(t)(Q MV(t) −

Q AV(t)).

Total energy balance By setting pEX(t) ≡ 0, i.e. by neglecting the effect of the pressure exerted by the surrounding organs, 
and by replacing the energy balance of the 0D left ventricle model with Eq. (20), we obtain again Eq. (13), where the total 
mechanical energy is now

M(t) = ELA(t) + ELV,3D(t) + ERA(t) + ERV(t) + ESYS
AR (t) + ESYS

VEN(t) + EPUL
AR (t) + EPUL

VEN(t)

+KSYS
AR (t) +KSYS

VEN(t) +KPUL
AR (t) +KPUL

VEN(t) +KLV,3D(t)
(21)

and the power of active contraction and the total dissipated power (
diss(t) ≥ 0) are


act(t) = 
act
LA (t) + 
act

LV,3D(t) + 
act
RA (t) + 
act

RV (t);

diss(t) = 
MV(t) + 
AV(t) + 
TV(t) + 
PV(t)

+ 
SYS
AR (t) + 
SYS

VEN(t) + 
PUL
AR (t) + 
PUL

VEN(t) + 
diss
LV,3D(t),

respectively; here 
ex(t) ≡ 0. We remark that Proposition 2 applies also to this case. Finally, we conclude that the 3D-0D 
coupled model satisfies the principle of conservation of mechanical energy. We remark that this result is achieved thanks 
to the energy-consistent boundary conditions imposed at the left ventricle base; see (M ). As a matter of fact, if other 
boundary conditions – such as homogeneous Neumann conditions – are imposed at the base instead, the relationship 



press
LV,3D(t) = pLV(t) d

dt V 3D
LV (d(t)) may not hold and the balance of Eq. (13) would not be satisfied.

We notice that, compared to the fully 0D case, the 3D electromechanical model shows two additional terms, namely 
KLV,3D(t) and 
diss

LV,3D, respectively accounting for the kinetic energy of the left ventricle and for the dissipation associated 
with the interaction of �epi

0 with surrounding tissues. Indeed, both features are not included in the 0D circulation model, in 
which cardiac chambers are modeled quasistatically.

3.3. Quantitative analysis of cardiac energetics

In Fig. 4 we report all the energy and power terms over a characteristic steady-state cardiac cycle obtained with a 
numerical simulation of the 0D circulation model. For this simulation we employ the parameters reported in Table 3, with 
Eact,max

LV = 2.75 mmHg mL−1 and Epass
LV = 0.08 mmHg mL−1, with Eact,max

LV = 2.75 mmHg mL−1 and Epass
LV = 0.08 mmHg mL−1. 

Fig. 4 (top-left) displays the time evolution of the terms of Eq. (13). We notice that, while the energy input (
act) occurs in 
a short time interval of nearly 100 ms (during systole), energy dissipation (
diss) takes place throughout the entire duration 
of the heartbeat. As a matter of fact, mechanical energy M plays a dominant role. Moreover, it is initially accumulated and 
then it is gradually dissipated as the blood flows through systemic and pulmonary circulations.

Fig. 4 (top-right, bottom-left, bottom-right) illustrate the details of the three terms M, 
act and 
diss, showing how they 
are split into the various subterms during the different phases of the heartbeat. Specifically, we notice that the chamber 
that contributes the most to the work generation is the LV, followed by the RV, while the atria only contribute – albeit to a 
small extent – around t = 0.8 s, during the atrial systole. The large part of mechanical energy and of dissipated power are 
associated with the systemic arterial circulation, as this branch of the circulatory network is located downstream the LV, the 
chamber carrying out most of the mechanical work. We remark that a non negligible dissipation of energy also takes place 
across the open valves, due to the high-speed blood flow across the valvular orifices.

Our model allows to estimate the daily production of mechanical work of the heart. This is obtained by multiplying the 
number of seconds in a day times the average generated power, given by:
13
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Fig. 4. Time evolution of both power and energy terms (M, E , K, 
act , 
diss) of the 0D circulation model. A single heartbeat in a periodic regime is 
considered.



act = 1

T

T∫
0


act(t)dt.

Applying this formula to the results of the simulation considered in Fig. 4, we obtain a daily work production of 182.5 kJ, 
of which 155.9 kJ attributable to the left ventricle, 24.8 kJ to the right ventricle and only 1.8 kJ to the atria.

In the daily clinical practice, the work generated by the myocardium is instead estimated through simple relationships 
[34,83]. In this regard, our model offers a tool to estimate the validity of these approaches. A commonly used formula [34]
is



act � pSYS

AR
S V

Tbeat
, (22)

where pSYS
AR denotes the average systemic arterial pressure (corresponding to the wrist average blood pressure), S V is the 

stroke volume (i.e. the difference between maximum and minimum V LV) and Tbeat is the heartbeat period. By applying 
(22) to the results of the above simulation, we obtain a daily work generation of 152.4 kJ. Hence (22) underestimates the 
mechanical work by 16%. As a matter of fact, (22) only refers to the work done by the left ventricle (which is, instead, 
approximated up to an error of only 2%). The large part of the error is thus attributable to the work performed by the right 
ventricle, which is not accounted for in (22).

In common clinical practice, then, pSYS
AR is not directly measured, but it is estimated as 1/3 pmax + 2/3 pmin, where 

pmax and pmin are the maximum (systolic) and minimum (diastolic) arterial pressures (see e.g. [83]). With this further 
approximation we obtain an estimated daily work of 138.8 kJ: this underestimates the left ventricle work by 11% and the 
total work of the myocardium by 24%.
14
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Fig. 5. Sketch of the segregated-intergrid-staggered numerical scheme.

4. Numerical approximation

We sketch in Fig. 5 the numerical approximation of problem (2). We use a partitioned numerical scheme that allows to 
separate and properly manage the space and time scales related to cardiac electromechanics, by using different mesh sizes 
and different time steps according to the characteristic scale of each core model. Our scheme is thus segregated (as the 
different core models are solved sequentially) and staggered (as different time step sizes can be used for the different core 
models) [14,37].

We perform the numerical approximation of the core models by using the Finite Element Method (FEM) in space and 
Finite Difference schemes in time [48].

We consider a fine representation of the computational domain for both (I ) and (E ) models, whereas a coarser one 
is employed for both (A ) and (M ). This is motivated by the requirement of a higher resolution for (I ) and (E ), due to 
the sharp wavefronts characterizing electrophysiological solutions, whereas both (A ) and (M ) feature larger spatial scales 
[14,10,54]. Moreover, the nonlinearities of (M ) warrants for the use of a coarser space discretization to make the numerical 
solution less computationally intensive.

For what concerns time discretization, we use a staggered strategy based on the Godunov splitting scheme [84]. This 
approach introduces a first order splitting error [37,38], which is compatible with the first order errors associated with the 
backward Euler method used for (I ), (E ), (A ), (M )–(V ), and the forward Euler method used for (C ). Moreover, the 
Godunov splitting scheme does not undermine the stability of the numerical scheme [38]. In our pipeline, we first update 
the variables of (I ) and (E ), then the variables of (A ) and finally, after updating the unknowns of (M )–(V ), we update 
the ones of (C ).

For electrophysiology, we employ a semi-implicit scheme, that we denote by (ISI)–(ESI), where SI stands for semi-
implicit. Mechanical activation (AE), is solved with an explicit method in time. Mechanics (MI) is instead implicitly 
discretized in time, due to the fact that the highly nonlinear (exponential) terms of the strain energy function W would 
need a restriction on the time step in both the semi-implicit and explicit contexts. Finally, we employ an explicit scheme 
for the circulation model, indicated as (CE). We use two different time steps for (ISI)–(ESI)–(AE) and for (MI)–(VI)–(CE).

We propose a novel strategy to perform the 3D-0D coupling, given by (V ), between (M ) and (C ), at the numerical 
level, within a segregated setting. Specifically, we solve the 3D mechanical problem under a volumetric constraint coming 
15
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from the 0D circulation model. The cavity pressure acts as Lagrange multiplier associated with this constraint. Thus, we 
obtain a saddle-point problem that we address, at the algebraic level, by means of a Schur complement reduction.

4.1. Space discretization and intergrid interpolation

We implemented an intergrid transfer operator between nested grids that can be generalized to the case of locally-
refined non-conforming nested grids. More details about this strategy can be found in [46]. We built an efficient and 
scalable interpolation data structure on top of the intergrid transfer operator that enables to evaluate the feedback coming 
from (E ) at the quadrature nodes defined on the mesh used for (M ) (and vice-versa), regardless of the polynomial degree 
used to discretize the two different models. This enables for a high level of numerical flexibility: different Finite Element 
degrees, as well as different levels of mesh refinement, can be effortlessly selected to tune the computational efficiency on 
the desired accuracy.

We consider two nested hexahedral meshes Th1 and Th2 of the computational domain �0, where Th1 has been generated 
by uniformly refining Th2 according to an octree structure [46,85], i.e. by recursively splitting each parent element of Th2

into eight sub-elements for a prescribed number of times, i.e. until the desired geometrical detail is reached. Here h1 and 
h2 (with h1 < h2) represent the mesh sizes, which we compute as the mean of the maximum diameter of each element.

We denote by Nu, Nw,z , Ns and Nd the number of degrees of freedom (DOFs, that is the number of variables) for the 
dimensionless transmembrane potential, gating and concentration variables, mechanical activation variables and displace-
ment, respectively. We denote the set of tensor-products of polynomials with degree smaller than or equal to r over a mesh 
element K by Qr(K ), and we introduce the following finite dimensional spaces:

X r
h1

= {v ∈ C0(�0) : v|K ∈Qr(K ) ∀K ∈ Th1},
X s

h2
= {v ∈ C0(�0) : v|K ∈Qs(K ) ∀K ∈ Th2},

for r, s ≥ 1.
We adopt the following notation. We denote by, e.g., dh1 (t) ≈ d(t) the semi-discretized Finite Element approximation of 

the variable d(t), defined over the computational mesh Th1 . On the other hand, we denote by dh1
(t) the vector collecting 

the DOFs associated with dh1 (t). Finally, we denote by dn
h1

� dh1
(tn) the vector collecting the DOFs of the fully discretized 

Finite Element problem.

Monodomain equation The set of basis functions for X r
h1

with Nu = dim(X r
h1

) is given by {φi}Nu
i=1. The semi-discretized 

formulation of the monodomain equation reads: find uh1 (t) ∈X r
h1

for all t ∈ (0, T ) such that∫
�0

u̇h1(t)φi d�0 +
∫
�0

( Jh1 F−1
h1

(dh1(t))D̃M,h1(dh1(t))F−T
h1

(dh1(t))∇uh1(t)) · ∇φi d�0

+
∫
�0

Ĩion(uh1(t), wh1(t), zh1(t))φi d�0 =
∫
�0

Ĩapp(t)φi d�0 ∀i = 1, ..., Nu,

(23)

with uh1 (0) =∑Nu
j=1(u0, φj)L2(�0)φj . The functions wh1 (t) and zh1 (t) are the semi-discretized versions of the gating variables 

and of the concentration variables, whereas uh1 (t) =
∑Nu

j=1 uj,h1 (t)φj is the Finite Element solution that approximates u =
u(t). The tensor Fh1 is the interpolated deformation tensor, obtained through the following procedure:

• The approximate solution dh2 to problem (M ) is interpolated from Th2 to Th1 to compute dh1 . The evaluation of dh1 at 
the quadrature points used to approximate Eq. (23) is performed using our intergrid transfer operator between nested 
meshes and arbitrary Finite Element spaces.

• We build Fh1 = I + ∇dh1 directly on Th1 after the interpolation procedure applied on the displacement field.

We rewrite Eq. (23) as a system of nonlinear ODEs by setting uh1
(t) = {uj,h1 (t)}Nu

j=1:{
Mu̇h1

(t) +K(dh1
(t))uh1

(t) + I ion(uh1
(t), wh1

(t), zh1
(t)) = I app(t) ∀t ∈ (0, T ),

uh1
(0) = u0,h1

,
(24)

where we have defined the following matrices

Mij =
∫
�0

Jh1φjφi d�0, Kij(dh1
(t)) =
∫
�0

( Jh1 F−1
h1

D̃M,h1 F−T
h1

∇φj) · ∇φi d�0,

and the following vectors
16
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(
I ion(uh1

(t), wh1
(t), zh1

(t))
)

i
=
∫
�0

Jh1 Ĩion(uh1(t), wh1(t), zh1(t))φi d�0,

(
I app(t)
)

i =
∫
�0

Jh1 Ĩapp(t)φi d�0.

For the evaluation of the nonlinear term I ion(uh1
(t), wh1

(t), zh1
(t)), three strategies are available [15,86–89]. In this work, 

we use the so-called ionic current interpolation (ICI) approach, which yields a faster assembly of the ionic term [15,86]. 
By denoting by {xK

q }Nq
q=1 and {ωK

q }Nq
q=1 the quadrature nodes and weights of a generic mesh element of K ∈ Th1 , the term 

I ion(uh1
(t), wh1

(t), zh1
(t)) is firstly evaluated at the DOFs and then interpolated at the quadrature nodes, i.e.:

∫
�0

Jh1 Ĩion(uh1(t), wh1(t), zh1(t))φi d�0

≈
∑

K∈Th1

⎛⎝ Nq∑
q=1

Jq,h1

Nu∑
j=1

Ĩion
(
uj,h1(t), w j,h1(t)zj,h1(t)

)
φj(xK

q )φi(xK
q )ωK

q

⎞⎠ .

(25)

Ionic model The ionic model under consideration is a system of 18 ODEs (12 for the gating variables, 6 for the concentration 
variables), which indirectly depends on the space variable over the mesh Th1 through the transmembrane potential u. The 
semi-discrete formulation can be written as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẇh1

(t) = H(uh1
(t), wh1

(t)) ∀t ∈ (0, T ),

żh1
(t) = G(uh1

(t), wh1
(t), zh1

(t)) ∀t ∈ (0, T ),

wh1
(0) = w0,h1

,

zh1
(0) = z0,h1

.

(26)

Mechanical activation model The semi-discrete formulation, which is written on Th2 , reads:

{
ṡh2

(t) = K (sh2
(t), ([Ca2+]i,h2(t), S Lh2(t))

T ) ∀t ∈ (0, T ),

sh2
(0) = s0,h2

,
(27)

where [Ca2+]i,h2(t) is obtained by interpolating the intracellular calcium concentration of TTP06 model from Th1 to Th2 as 
explained in the introduction to this section. The operator K represents the element-wise application of the ANN associated 
with the activation model, previously trained from a collection of simulations obtained with the high-fidelity RDQ18 model 
[32,33]. On the other hand, S Lh2 (t) ∈X s

h2
is obtained by solving, for any t ∈ (0, T ):

∫
�0

S Lh2(t)φ +
∑

K∈Th2

∫
K

h2 ∇ S Lh2(t) · ∇φ =
∫
�0

S L0

√
I4 f ,h2(t)φ ∀φ ∈ X s

h2
, (28)

where I4 f ,h2 (t) = Fh2 (t)f0 · Fh2 (t)f0. Equation (28) corresponds to an L2 projection of the field S L0
√
I4 f ,h2 (t) onto the Finite 

Element space X s
h2

with an harmonic smoothing. We notice that the smoothing term scales as h2 (the mesh size). This 
term allows to regularize the S L field in the case of coarse meshes, by smoothing the discontinuities that the displacement 
gradient might show across the mesh elements. In the case of fine meshes, instead, the term becomes irrelevant as it 
vanishes for h → 0. This is in fact numerically consistent with the continuous problem [48]. Finally, Ta,h2 (t) denotes the 
semi-discretized active tension, obtained by evaluating the function Ta = T max

a G(s) at the nodes.

Mechanical model We denote by [X s
h2

]3 the finite dimensional subspace of vector valued functions and by {φ i}Nd
i=1 its basis. 

The semi-discretized version of (M ) reads: given Ta,h (t), find dh = dh (t) ∈ [X s ]3 for all t ∈ (0, T ) such that
2 2 2 h2

17
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∫
�0

ρsd̈h2(t) · φi d�0 +
∫
�0

P(dh2(t), Ta,h2(t)) : ∇φid�0

+
∫

�
epi
0

[
(Nh2 ⊗ Nh2)

(
K epi

⊥ dh2(t) + Cepi
⊥ ḋh2(t)

)

+ (I − Nh2 ⊗ Nh2)
(

K epi
‖ dh2(t) + Cepi

‖ ḋh2(t)
)]

· φi d�0

= −pLV(t)

∫
�endo

0

Jh2 F−T
h2

N · φi d�0 + pLV(t)

∫
�base

0

| Jh2 F−T
h2

N|vbase
h2

· φi d�0

∀i = 1, ..., Nd,

(29)

with dh2 (0) =∑Nd
j=1(d0, φj)[L2(�0)]3φj , ḋh2 (0) =∑Nd

j=1(ḋ0, φj)[L2(�0)]3φj and where

vbase
h2

=
∫
�endo

0
Jh2 F−T

h2
N d�0∫

�base
0

| Jh2 F−T
h2

N|d�0
.

The corresponding algebraic formulation reads:{
ρsMd̈h2

(t) +F ḋh2
(t) + Gdh2

(t) + S(dh2
(t), Ta,h2(t)) = pLV(t) p(dh2

(t)) ∀t ∈ (0, T ),

dh2
(0) = d0,h2

, ḋh2
(0) = ḋ0,h2

,
(30)

with:

S i(dh2
(t), Ta,h2(t)) =

∫
�0

P(dh2(t), Ta,h2(t)) : ∇φi d�0,

Fi,j =
∫

�
epi
0

[
(Nh2 ⊗ Nh2)Cepi

⊥ + (I − Nh2 ⊗ Nh2)Cepi
‖
]
φj · φi d�0,

Gi,j =
∫

�
epi
0

[
(Nh2 ⊗ Nh2)K epi

⊥ + (I − Nh2 ⊗ Nh2)K epi
‖
]
φj · φi d�0,

pi(dh2
(t)) =

∫
�base

0

| Jh2 F−T
h2

N|vbase
h2

· φi d�0 −
∫

�endo
0

Jh2 F−T
h2

N · φi d�0,

where dh2
(t) = {dj,h2 (t)}Nd

j=1. Equations (23), (26), (27) and (29) provide a splitted semi-discretization of the entire elec-
tromechanical model.

4.2. Time discretization

We define �t as the time step for (MI)–(VI), (CE) and τ = �t/Nsub as the time step for (ISI), (ESI), (AE), being Nsub ∈
N the number of intermediate substeps that need to be solved by (ISI)–(ESI)–(AE) before a time step �t of (MI)–(VI)

and (CE) is performed.

Problem (ISI)–(ESI)–(AE) from tn to tn+1, once we set tn+ m
Nsub = tn + mτ , for m = 1, ..., Nsub, reads as follows:

• We find w
n+ m

Nsub
h1

and z
n+ m

Nsub
h1

defined on Th1 by solving:⎧⎪⎪⎨⎪⎪⎩
1

τ
w

n+ m
Nsub

h1
= 1

τ
wn

h1
+ H(un

h1
, w

n+ m
Nsub

h1
),

1

τ
z

n+ m
Nsub

h1
= 1

τ
zn

h1
+ G(un

h1
, wn

h1
, zn

h1
).

(31)

We adopt here the first order IMEX scheme proposed in [35]. Specifically, we employ an explicit treatment of the ionic 
concentrations to avoid the solution of a nonlinear system (such choice does not compromise the stability of the scheme, 
thanks to the non-stiff dynamics of concentrations), and an implicit treatment of the gating variables, because of the 
severe CFL condition on the time step induced by an explicit scheme. We notice that, thanks to the linear dynamics of 
the gating variables, such implicit handling does not require the solution of a system of linear or nonlinear equations.
18
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• We interpolate dn
h2

on the fine mesh Th1 at t = tn . We use z
n+ m

Nsub
h1

from (31) and dn
h1

to find u
n+ m

Nsub
h1

over Th1 by 
solving:(

1

τ
M+K(dn

h1
) + I ion

u

(
un

h1
, z

n+ m
Nsub

h1

))
u

n+ m
Nsub

h1
=

1

τ
Mun

h1
− Ĩ

ion
(

un
h1

, z
n+ m

Nsub
h1

)
+ I app

(
t

n+ m
Nsub

)
.

(32)

I ion
u is the derivative of the terms of I ion that linearly depends on uh1

, while Ĩ
ion

collects all the other terms.

• We interpolate [Ca2+]n+ m
Nsub

i,h2
from (31) on the coarse mesh Th2 , and we find s

n+ m
Nsub

h2
by solving:

s
n+ m

Nsub
h2

= sn
h2

+ τ K (sn
h2

, ([Ca2+]n+ m
Nsub

i,h2
, S Ln

h2
)T ), (33)

where S Ln
h2

is obtained by solving problem (28).

After having solved (31), (32) and (33) for Nsub steps, we treat (MI)–(VI) and (CE) at tn+1 in the following way:

• We update dn+1
h2

and pn+1
LV with the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ρs

1

�t2
M+ 1

�t
F + G
)

dn+1
h2

+ S(dn+1
h2

,Tn+1
a,h2

)

= ρs
2

�t2
Mdn

h2
− ρs

1

�t2
Mdn−1

h2
+ 1

�t
Fdn

h2
+ pn+1

LV p(dn+1
h2

),

V 3D
LV (dn+1

h2
) = V 0D

LV (cn
1).

(34)

• We find cn+1
1 with the forward Euler method:

cn+1
1 = cn

1 + �t D̃
(

tn, cn
1, pn+1

LV

)
. (35)

Eq. (34) is a nonlinear saddle-point problem. In the next section (Sec. 4.3) we provide details about its numerical ap-
proximation at the algebraic level. An alternative to our approach for numerical discretization would be employing implicit 
monolithic schemes, which are known to be stable and accurate, but at the same time they present constraints in the choice 
of the time steps and they are characterized by high computational costs [14,15]. Indeed, we can only use one time step 
and one mesh with a monolithic approach. Therefore, we are forced to choose a small time step and a fine representation 
of the computational domain due to the requirements of cardiac electrophysiology. Our approach is instead accurate and 
computationally efficient, thanks to the flexibility in the choice of both space and time resolution among the different core 
models.

4.3. Algorithm for the resolution of Eq. (34)

We approximate the solution of Eq. (34) by means of a quasi-Newton strategy [48], as we proposed in [33]. Specifically, 
in the computation of the Jacobian matrix, we neglect the derivative of the nonlocal term vbase

h2
in the pressure variable, 

and we update the Jacobian at each time step, but not through the iterations of Newton’s loop. By moving all the terms 
in Eq. (34) to the left hand side and by rewriting its first and second line as rn+1

d (dn+1
h2

, pn+1
LV ) = 0 and rn+1

p (dn+1
h2

) = 0, 
respectively, the quasi-Newton algorithm reads as follows:

• We set dn+1,0
h2

= dn
h2

and pn+1,0
LV = pn

LV.
• For j = 0, 1, . . . , until a convergence criterion is not fulfilled, we solve the following linear system:(

Jn+1
d,d Jn+1

d,p

Jn+1
p,d 0

)(
�dn+1, j

h2

�pn+1, j
LV

)
= −
(

rn+1, j
d

rn+1, j
p

)
, (36)

where Jn+1
d,d � ∂

∂d rn+1
d (dn

h2
, pn

LV) (wherein we neglected the derivative with respect to the nonlocal term vbase
h2

), Jn+1
d,p =

∂
∂ p rn+1

d (dn
h2

, pn
LV), Jn+1

p,d = ∂
∂d rn+1

p (dn
h2

), rn+1, j
d = rn+1

d (dn+1, j
h2

, pn+1, j
LV ) and rn+1, j

p = rn+1
p (dn+1, j

h2
).

• We update dn+1, j+1
h2

= dn+1, j
h2

+ �dn+1, j
h2

and pn+1, j+1
LV = pn+1, j

LV + �pn+1, j
LV .

• When the convergence criterion is satisfied, we set dn+1 = dn+1, j and pn+1 = pn+1, j .
h2 h2 LV LV
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From the algebraic viewpoint, we solve the saddle-point problem (36) via Schur complement reduction [51]. Specifically, 
we solve the two linear systems

Jn+1
d,d vn+1, j = rn+1, j

d , Jn+1
d,d wn+1, j = Jn+1

d,p

and we set:

�pn+1, j
LV = rn+1, j

p − Jn+1
p,d vn+1, j

Jn+1
p,d wn+1, j

, �dn+1, j
h2

= −
(

vn+1, j + wn+1, j�pn+1, j
LV

)
. (37)

We remark that, thanks to the reuse of the Jacobian matrix throughout the Newton loop, wn+1, j becomes independent of j
and thus it does not need to be recomputed at each iteration. Our scheme only involves the following operations: for each 
time step, we assemble the matrix Jn+1

d,d and the vectors Jn+1
p,d and Jn+1

d,p and we solve the linear system Jn+1
d,d wn+1,0 = Jn+1

d,p ; 

at each Newton iteration, we only need to solve the linear system Jn+1
d,d vn+1, j = rn+1, j

d and perform a couple of matrix-
vector multiplications and a vector-vector sum of Eq. (37). We later show, through several numerical simulations, that this 
approach is numerically stable. Even more importantly, our scheme is appropriate for the whole heartbeat, as it does not 
require adaptations according to the specific cardiac phase.

Moreover, our approach allows for a segregated solution of the 3D-0D coupled model, which is instead typically solved 
through a monolithic strategy [50]. As a matter of fact, segregated schemes available in literature that couple a mechanical 
problem with a model describing the dynamics of a fluid (even when described through a 0D circulation model) generally 
fail when the fluid domain is fully enclosed by the solid structure, because the incompressibility constraint of the fluid is 
no longer satisfied after the structure update [50]. This is known as balloon dilemma and affects also cardiac chambers, 
either when coupled with a 3D circulation model – within a fluid-structure interaction framework [90,91] – or with a 0D 
one. To overcome it, the 3D-0D cardiac circulation models available in literature rely either on a monolithic solution of the 
two models, where the 0D and 3D models are simultaneously discretized as a unique system and then typically solved by 
a Newton method [50] or iterative methods that progressively update the cavity pressures and the solid displacement, until 
convergence is reached. For instance, in [92], the authors proposed a method where the cavity pressure is initially estimated 
by extrapolating from previous time steps. Then, the cavity compliance (i.e. ∂V /∂ p, where p and V are the cavity pressure 
and volume, respectively) is estimated by finite differences and is used to update the pressure until the blood flux of the 
3D model matches that of the 0D model within a prescribed tolerance. Similarly, in [37,38], during the isovolumic phases, 
the cavity pressure is iteratively updated by a fixed point scheme. However, convergence of this scheme depends upon a 
relaxation parameter, whose optimal value needs to be manually assessed from case to case [37].

With our approach, instead, the mechanical 3D model (M ) and the circulation 0D model (C ) are solved in both a 
segregated and staggered manner. Indeed, we do not solve the (M ) model simultaneously to the (C ) model, but coupled 
to the volume-consistency condition (V ) instead. In this way we end up with the saddle-point problem (34). Thanks to the 
above algorithm, finally, at each Newton iteration, we only need to solve a linear system involving the Jacobian matrix of 
the (M ) problem, and perform a couple of matrix-vector operations.

4.4. Stresses computation

Starting from [37], we define the following indicator for evaluating the components of the mechanical stress:

Sab = (Pa0) · Fb0

|Fb0| , (38)

where a, b ∈ { f , s, n} indicate the fiber ( f ), the sheet (s) and the crossfiber (n) direction respectively. The metric Sab mea-
sures the stress component in the b direction (where b = Fb0|Fb0| denotes the direction b0 in the current configuration) across 
a surface normal to the direction a0. Hence, we refer to axial stresses when a = b, whereas we get shear stresses when 
a �= b. We remark that in the active stress framework, P incorporates an additive decomposition between the passive and 
the active terms, the latter coming from the active tension Ta.

Even though a possible strategy to handle the calculation of the stress tensor would be to solve a L2-projection problem 
[37], we represent each component as a piece-wise constant (Q0) Finite Element vector, where the average of the values 
over the quadrature points of each cell is associated with the only local degree of freedom corresponding to the cell centroid. 
Since the stresses are only processed for visualization purposes, our strategies turn out to be very efficient while not 
hampering the accuracy of the computation.

5. Recovering the reference stress-free configuration

Here we present the algorithm for recovering the reference configuration �0 from the deformed configuration �̃, know-
ing that the latter is obtained from the former by applying a pressure p̃ and an active tension T̃a. The steady state version 
of the PDE for cardiac mechanics is reported in Eq. (11). In what follows, we denote by d = deq(x0, pLV, Ta) the equilibrium 
solution of Eq. (11) obtained on the computational domain of coordinate x0. Hence, our aim is finding a coordinate x0 such 
that x0 + deq(x0, pLV, Ta) = x̃.
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Fig. 6. Visual representation of the basic version of the fixed-point algorithm (see Algorithm 1).

Algorithm 1 Reference configuration recovery (basic version).
parameters: kmax, εtol
output: converged_RCB, x0

procedure ReferenceConfigurationBase(̃x, ̃p, ̃Ta)
x(0)

0 ← x̃
for k = 0, . . . , kmax do

(converged_SSM, d(k)) ← SteadyStateMechanics(x(k)
0 , ̃p, ̃Ta)

if not converged_SSM then
return (false, 0) � Newton method does not converge.

end if
x(k) ← x(k)

0 + d(k)

if ‖x(k) − x̃‖ ≤ εtol‖d(k)‖ then
return (true, x(k)

0 ) � Fixed-point converged.
end if
x(k+1)

0 ← x̃ − d(k) � Fixed-point update.
end for
return (false, 0) � Maximum number of iterations reached.

end procedure

5.1. Algorithm for the recovery of the reference configuration

A representation of this algorithm is shown in Fig. 6. We start by setting the coordinate of the reference configuration x0

equal to the coordinate of the deformed one (i.e. x(0)
0 = x̃). Then, we solve the elastostatic problem of Eq. (11), and we get 

the displacement d(0) = deq(x(0)
0 , pLV, Ta) (Fig. 6, top-left). Since, when the configuration �̃ is recorded the active tension 

T̃a is almost zero, in the deformed configuration x(0) = x(0)
0 + d(0) the ventricle is inflated compared to the configuration 

x̃. Thus, with the aim of correcting the mismatch between x(0) and ̃x, we deflate the ventricle by setting x(1)
0 = x(0)

0 + (̃x −
x(0)) = x̃ − d(0) (Fig. 6, top-right). Then, we proceed by iterating the above steps. More precisely, for k ≥ 1, we compute 
d(k) = deq(x(k)

0 , pLV, Ta) (Fig. 6, bottom-left) and we set x(k+1)
0 = x̃ − d(k) (Fig. 6, bottom-right), stopping when the difference 

between two consecutive iterations is sufficiently small.
The whole procedure is reported in Algorithm 1, where we denote the function that solves problem (11) on the geometry 

with coordinates x0 as SteadyStateMechanics. The latter function solves the nonlinear system by means of the Newton 
method. In case the Newton iterations do not reach convergence (according to a criterion based both on the residual and 
on the difference between two consecutive iterations), it returns a flag to indicate failure of the algorithm. More precisely, 
the function signature reads

(converged_SSM,d) = SteadyStateMechanics(x0, pLV, Ta)

where, in case of convergence, converged_SSM is true and d = deq(x0, pLV, Ta), while in case of non convergence 
converged_SSM is false and d is not used. We remark that an algorithm similar to Algorithm 1 is presented in [40].

Algorithm 1 can be interpreted as a fixed-point iteration scheme. Indeed, the fixed-point x0 of the map defined by the 
Algorithm 1 iteration satisfies x0 = x̃ − deq(x0, pLV, Ta). The fixed-point iterations of Algorithm 1 are sketched in Fig. 7. The 
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Fig. 7. Representation of the basic version of the reference configuration recovery algorithm (Algorithm 1).

Fig. 8. Representation of the enhanced version of the reference configuration recovery algorithm (see Algorithms 2 and 3).

solution is obtained as the intersection between the line x̃ = x0 + d and the manifold d = deq(x0, pLV, Ta). The algorithm 
proceeds iteratively in the space (x0, d): the first variable is updated by the fixed-point iterations (horizontal axis of Fig. 7), 
while the second variable is updated by Newton iterations (vertical axis of Fig. 7).

However, the implementation shown in Algorithm 1 has several limitations when applied to realistic heart geometries 
and to highly nonlinear constitutive laws, such as in the case of cardiac mechanics. In fact, both the Newton method 
employed in SteadyStateMechanics and the fixed-point scheme employed in ReferenceConfigurationBase do not converge 
if the initial guess is not “sufficiently” close to the solution. In particular, our experience revealed that the attraction basin 
of the fixed-point iterations scheme gets smaller and smaller as the value of pLV grows and as h decreases.

For a geometry with 4’588 elements (see Sec. 6 for details), the algorithm terminates successfully for p̃ = 350 Pa �
2.62 mmHg, but fails for p̃ = 400 Pa � 3 mmHg. Refining the geometry with one splitting level (36’704 elements), the 
algorithm succeeds up to p̃ = 50 Pa � 0.37 mmHg, but fails already for p̃ = 100 Pa � 0.75 mmHg. Therefore, we conclude 
that Algorithm 1 is unsuitable for realistic cardiac geometries.

For these reasons, we improved Algorithm 1 by increasing its robustness through several strategies. We propose in 
Algorithm 2 the enhanced version of Algorithm 1. First, we introduced a relaxation parameter α ∈ (0, 1] in the fixed-point 
iteration, by rewriting it as x(k)

0 ← x(k−1)
0 + α(̃x − x(k−1)). We update α adaptively as written in Algorithm 3: in case of 

non-convergence of the Newton iterations, we repeat the last fixed-point iteration for a smaller value of α; in case of 
convergence, we increase it in the next iteration. Moreover, the fixed-point iterations are nested inside an outer loop, in 
which we progressively increase the value of pLV and Ta until the target value p̃ and T̃a is reached (continuation method). 
In this outer loop, we adaptively change the step ω(k) , by decreasing it in case of failure of the inner fixed-point loop and 
increasing it in case of success.

We remark that after each failure of either SteadyStateMechanics or FixedPoint function, we reset the value of d to the 
last solution of Eq. (11). This ensures the success of such continuation strategy, by which we move in the space (x0, d, ω)

staying close to the intersection of the curves d = x̃ − x0 and d = deq(x0, ωpLV, ωTa) (see Fig. 8).
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Algorithm 2 Reference configuration recovery (enhanced version).

parameters: kmax, εramp
tol , εfinal

tol , γ +
ω , γ −

ω , �ωmax

output: converged_RC, x0

procedure ReferenceConfiguration(̃x, ̃p, ̃Ta)
x(0)

0 ← x̃
ω(0) ← 0
�ω ← �ωmax

for k = 0, . . . , kmax do
ω(k) ← min(ω(k−1) + �ω, 1)

if ω(k) = 1 then
εtol ← εfinal

tol
else

εtol ← ε
ramp
tol

end if
(converged_FP, x(k)

0 ) ← FixedPoint(̃x, ω(k) p̃, ω(k) T̃ax(k−1)
0 , εtol)

if converged_FP then
if ω(k) = 1 then

return (true, x(k)
0 ) � Ramp converged.

end if
�ω ← min(γ +

ω �ω, �ωmax)

else
�ω ← γ −

ω �ω
end if

end for
return (false, 0) � Maximum number of iterations reached.

end procedure

Algorithm 3 Inner fixed-point loop of the reference configuration recovery algorithm.
parameters: kmax, αmin, αmax, γ +

α , γ −
α

output: converged_FP, x0

procedure FixedPoint(̃x, pLV, Ta, x0, εtol)
x(0)

0 ← x0

α ← αmax

(converged_SSM, d(0)) ← SteadyStateMechanics(x(0)
0 , pLV, Ta)

if not converged_SSM then
return (false, 0)

end if
for k = 0, . . . , kmax do

x(k)
0 ← x(k−1)

0 + α(̃x − x(k−1)) � Fixed-point update.

(converged_SSM, d(k)) ← SteadyStateMechanics(x(k)
0 , ̃p, ̃Ta)

if converged_SSM then

x(k) ← x(k)
0 + d(k)

if ‖x(k) − x̃‖ ≤ εtol‖d(k)‖ then
return (true, x(k)

0 ) � Fixed-point converged.
end if
α ← min(γ +

α α, αmax)

else
α ← max(γ −

α α, αmin)

end if
end for
return (false, 0) � Maximum number of iterations reached.

end procedure

5.2. Projection of the reference configuration from a coarser mesh

The procedure to recover the reference configuration (Algorithm 2) requires to numerically solve the elastostatic problem 
of Eq. (11) multiple times, until the fixed point algorithm converges. According to our experience, this procedure can be very 
computationally demanding in cardiac applications, especially if realistic human heart geometries and fine representations 
of the computational domain need to be considered. To overcome this issue, the reference configuration recovery algorithm 
can be run on a coarser mesh compared to the couple of nested meshes Th2 -Th1 used for the electromechanical model. A 
natural choice can be to exploit once again the efficient hierarchical octree structure, but starting from a coarser level h3, 
generating accordingly the triad of nested meshes Th3 -Th2 -Th1 . However, a further level of coarsening would imply a loss of 
geometric accuracy that is propagated also into the finer couple of meshes Th2 -Th1 , affecting the electromechanical model.

For this reason, we propose a projection technique which enables to map to the reference configuration �0 from a 
coarser non-nested mesh. This mesh – named T˜ – can be independently generated with a mesh size h̃3 such that h2 <
h3
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Fig. 9. A sketch of the projection procedure from a coarse mesh Th̃3
(in blue) into a finer mesh Th2 (in red): on the internal points ̃xi

h2
∈ Th2 we recover 

the value by exploiting the basis functions of the element K i ∈ Th3 (in green); on the external points ̃x j
h2

∈ Th2 we project the value of the closest point 
x̃ j

h3
∈ Th̃3

evaluated on the closest element K j ∈ Th̃3
(in purple).

h̃3 < h3. Such strategy provides the advantages of having more flexibility on the choice of the mesh size ̃h3 and of preserving 
the geometric accuracy for the electromechanical meshes Th2 -Th1 .

The complete procedure consists of the following steps:

1. generate two non-nested computational meshes Th2 and Th̃3
from the deformed configuration �̃, i.e. the one recon-

structed from the medical images, such that h2 < h̃3. The former is characterized by the target mesh size for the 
mechanical simulation.

2. solve the reference configuration recovery (Algorithm 2) on the coarser mesh Th̃3
, obtaining the displacement field dh̃3

;

3. project the displacement dh̃3
on the finer mesh Th2 obtaining the field d̂h2 , which approximates the displacement dh2 , 

i.e. the one that would be computed if the reference configuration recovery (Algorithm 2) is applied directly on the 
finer mesh Th2 ;

4. move each vertex of the mesh Th2 according to x0 = x̃ − d̂h2 , recovering the computational mesh Th2 that describes the 
reference configuration �0;

5. hierarchically refine Th2 to generate the fine mesh Th1 for the electrophysiology.

We remark that the projection (step 3) is necessary despite both Th2 and Th̃3
describe the same domain �̃. Indeed, in 

practice, their boundaries do not match, since they are independent polygonal surfaces made of piecewise linear elements. 
Thus, some vertexes of Th2 can lie outside Th̃3

, as illustrated in the 2D sketch of Fig. 9. As a consequence, to recover ̂dh2 in 
all the vertexes of the mesh Th2 , we proceed in a different way if these vertexes lie inside or outside Th̃3

. In particular:

• for the internal vertexes – denoted as ̃xi
h2

, i = 0, 1, 2, . . . – it is sufficient to find the element K i ∈ Th3 such that K i � x̃i
h2

and evaluate dh3 (̃xi
h2

) exploiting its Finite Element expansion on K i (see Fig. 9, green element);

• conversely, for each external point – denoted as ̃x j
h2

, j = 0, 1, 2, . . . – more sub-steps are necessary, (see Fig. 9, purple 
element):
1. we find the closest element K j ∈ Th̃3

from the external point ̃x j
h2

;

2. on K j we find the closest point ̃x j
h3

to ̃x j
h2

;

3. we evaluate dh3 (̃x j
h3

) and we project the resulting value into the external point ̃x j
h2

.

From the implementation point of view, this projection is performed by exploiting the VTK library [93] in our Finite Element 
library lifex (https://lifex .gitlab .io /lifex). VTK filtering utilities allow to locate all internal points, which are the majority, 
in a really fast way. Moreover, the VTK library is efficient in performing closest points interpolation, leading to a very 
fast projection procedure. However, we remark that the hierarchical octree structure [46,85] still remains more effective 
for electromechanical simulations, where the exchange of information between (nested) meshes occurs at each time step. 
Indeed, the projection presented here is intended to be a single pre-processing step to be performed before the non-
stationary electromechanical simulation. An example of this projection in a left ventricle is shown in Sect. 6.1.

6. Numerical results

In this section, we present several electromechanical simulations obtained with a left ventricle geometry that is prepro-
cessed from the Zygote Solid 3D heart model [52], which represents the 50th percentile of a healthy Caucasian male in the 
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U.S., reconstructed from a high resolution computed tomography scan. This model has been acquired at 70% of diastole, i.e. 
in the last part of the diastasis phase, when the initial passive filling of the heart’s ventricles has slowed, but before the 
atria contract to complete the active filling.

First, we show an example of projection of the reference configuration from a coarser mesh by exploiting the method 
detailed in Sec. 5.2. Then, we show that our mathematical model can generate several scenarios according to the chosen 
parameter sets: specifically, we vary preload, afterload and contractility, and we evaluate the effects of these changes on the 
PV loops of the left ventricle.

We consider a fine mesh Th1 for cardiac electrophysiology which consists of 2’590’464 DOFs and 2’663’817 vertices 
(hmean = 0.75 mm), while the coarse mesh Th2 for cardiac mechanics is endowed with 40’476 DOFs and 47’529 vertices 
(hmean = 3 mm). Specifically, the fine mesh is obtained by two recursive splitting of each element of the coarse one. The 
mesh Th2 is generated with vmtk (www.vmtk.org) [94], by exploiting the recently proposed tools for cardiac mesh genera-
tion [95].

The numerical methods of Sec. 4 have been implemented in lifex (https://lifex .gitlab .io /lifex), a high-performance C++
library developed within the iHEART project1 and based on the deal.II (https://www.dealii .org) Finite Element core [96]. 
The numerical simulations have been obtained by employing lifex in a parallel setting, using either a HPC resource 
available at MOX (48 Intel Xeon ES-2640 CPUs) or the GALILEO supercomputer from Cineca (7 nodes endowed with 36 Intel 
Xeon E5-2697 v4 2.30 GHz CPUs, for a total number of 252 cores).

We apply a current Ĩapp(x, t), distributed in space as a Gaussian with peak Ĩmax
app , for a duration of tapp, in three different 

regions of the myocardium to trigger the electrical signal in the left ventricle. These regions are located at the central 
distance between the apex and the base of the ventricle. Even if we do not model the Purkinje network [68,69], the 
electrical activation of the tissue that we propose is known to provide comparable results in terms of mechanical indicators, 
such as displacement magnitude and blood volume over time, and minor differences in the activation maps [67]. We use 
the Bayer-Blake-Plank-Trayanova algorithm [71,73] to generate the fiber distribution (field f0) for our geometry, using αepi =
−60◦ , αendo = 60◦ , βepi = 20◦ and βendo = −20◦ . In all numerical tests, we set for simplicity pEX(t) ≡ 0. All the parameters 
related to the monodomain equation and passive mechanics are reported in Tables 1 and 2 respectively. We use a time 
step �t1 = 50 μs for electrophysiology, activation and circulation, whereas mechanics is solved in time with a time step 
�t2 = 250 μs. Further information about the parameters of both linear and nonlinear solvers is reported in Appendix B.

6.1. Projection of the reference configuration

We discuss the results of the linear projection of the reference configuration (Sect. 5.2) by running the recovery of 
reference configuration (Algorithm 2) for the Zygote left ventricle geometry. In particular, we consider the following mesh 
configurations:

• config1: a triad of nested meshes Th3 -Th2 -Th1 ; the coarsest one for the recovery algorithm, the intermediate one for 
mechanics and the finer one for electrophysiology;

• config2: an independent coarser mesh Th̃3
for the recovery algorithm, and a couple of nested meshes Th2 -Th1 for the 

electromechanical model;
• config3: a couple of nested meshes Th2 -Th1 for the electromechanical model, where the mesh Th2 is used also for the 

recovery algorithm.

In Fig. 10, we show the results of the recovery algorithm on these three configurations, choosing h = 3 mm as target 
mesh size for mechanics (i.e. Th2 ). More in detail, we create an ad-hoc hierarchical triad Th3 (hmean = 6 mm)-Th2 (hmean =
3 mm)-Th1 (hmean = 0.75 mm) for config1. While config2 and config3 exploit the hierarchical dyad Th2 (hmean = 3 mm)-
Th1 (hmean = 0.75 mm), Th̃3

for config2 contains 15’764 DOFs and 19’099 vertices (hmean = 4 mm).
The displacement field dh2 of config3 represents the reference result since it is obtained by running directly the recovery 

algorithm on Th2 , i.e. the finer mesh that we consider. On the contrary, config1 presents a large loss of geometric accuracy, 
which is propagated into the two meshes Th2 -Th1 of the electromechanical model. Indeed, Th3 appears too sharp and not 
realistic, especially at the base and at the apex. Moreover, the displacement field dh3 computed on Th3 is qualitative different 
from the reference one (dh2 , config3).

In config2, we first compute the displacement field dh̃3
on the independent coarse mesh Th̃3

, and then we obtain the 
projected field d̂h2 on Th2 by exploiting the linear projection procedure (Sect. 5.2). The projected field d̂h2 features a good 
qualitative match with the field dh2 . More quantitatively, we obtain an average error |dh2 − d̂h2 | = 0.105 mm. This quantity 
is lower than the standard resolution of cardiac medical images (about 0.5 mm for high-quality acquisition). Thus, we can 
consider this error lower than the geometric uncertainty when dealing with patient-specific simulations. Moreover, being 
Th̃3

made of a considerable lower number of elements if compared to Th2 , config2 saves a large amount of computational 
time for the execution of Algorithm 2, compared to config3.

1 iHEART – An Integrated Heart Model for the simulation of the cardiac function, European Research Council (ERC) grant agreement No 740132, P.I. Prof. 
A. Quarteroni.
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Fig. 10. Solving the reference configuration recovery (Algorithm 2) for three different settings, with a common target mesh size for the mechanical simula-
tion (Th2 , h = 3 mm): in config1 we apply the recovery algorithm on the coarsest mesh of a triad of hierarchical nested meshes (Th3 , h = 6 mm); in config2
the algorithm runs on an independent coarse mesh (Th̃3

, h = 4 mm) and the displacement is projected onto Th2 ; in config3 we compute the reference 
configuration directly on Th2 .

Config2 is the cheapest procedure in terms of total computational cost, moreover it presents a negligible error and does 
not affect the geometrical accuracy of the electromechanical model. We conclude by recommending this setting when a fine 
patient-specific mesh is employed for the mechanical problem.

6.2. Tests cases varying preload, afterload and contractility

We test the response of our electromechanical model to some scenarios of clinical interest. The parameters of the base-
line simulation are reported in Appendix A. Starting from this setting, we consider three physiologically relevant scenarios, 
aimed at investigating the effects of changes in preload, afterload and myocardial contractility, respectively. In all the cases, 
we simulate 10 heartbeats, until when we reach a limit cycle, that is a periodic regime. However, we report only the PV 
loops related to the last cardiac cycle.

6.2.1. Baseline simulation
In Fig. 11 we report the time evolution of both the transmembrane potential V and the displacement magnitude |d|

in the Zygote left ventricle, considering the last heartbeat of the simulation. We compute the initial displacement d0 by 
inflating �0 until the desired end-diastolic pressure is reached. In practice, we accomplish this task by performing a pressure 
ramp on the quasi-static approximation of the mechanical problem.

In Fig. 12 we depict the axial stresses Sff , Sss and Snn, whereas in Fig. 13 we show the shear stresses Sfs, Sfn and Ssf. We 
observe that Sff has a dominant role with respect to Sss and Snn, especially during ejection (i.e. the second part of systole) 
and isovolumetric relaxation (i.e. early diastole). The same considerations hold for the shear stresses components involving 
the fiber field f .

In Figs. 14 and 15 we depict the pressure and volume traces for the four cardiac chambers, namely atria and ventricles. 
We notice that the stroke volume of both ventricles is comparable, with an ejection fraction E F ≈ 50% that mimics the 
heart condition of an healthy adult. Same considerations hold for the pressure peaks of both ventricles during the ejection 
phase. Moreover, the PV loops of the atria show both the A-loop (driven by atrial contraction) and the V-loop (driven by 
ventricular relaxation).

6.2.2. Test Case 1
We change the ventricles preload (i.e. their end-diastolic pressure) by modifying the value of the atrial contractility 

with respect to the baseline setting of Appendix A. More precisely, we consider the two cases when Eact,max
LA and Eact,max

RA
are respectively increased and decreased by 50%. As shown in Fig. 16, the larger the atrial contractility, the more blood is 
injected in the ventricle, thus increasing preload. Moreover, our electromechanical model predicts a larger stroke volume for 
a larger preload. This is consistent with the so-called Frank-Starling effect, a self-regulatory mechanism that guarantees the 
balance between venous return and cardiac output [1].

6.2.3. Test Case 2
We investigate the effects of changing the resistance of the arterial circulation. This mimics the situation of a patient af-

fected by diseases associated with hypertension, such as arteriosclerosis, or to the effect of vasodilator-vasoconstrictor drugs. 
Starting from the baseline setting, we perform two additional simulations where we respectively increase and decrease by 
15% the value of RSYS

AR . In both cases, we modify the value of CSYS
AR accordingly, so that the product RSYS

AR CSYS
AR , corresponding 

to the characteristic time constant of the arterial system, is preserved. The results in Fig. 16 show that an increase of the 
arterial resistance yields larger values of both the aortic valve opening pressure and the maximal left ventricle pressure 
(hypertensive effect).
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Fig. 11. Evolution of the transmembrane potential V and the displacement magnitude |d| in the Zygote left ventricle during the last cardiac cycle of the 
baseline simulation. The right view of each picture is warped by the displacement vector. Conversely, the transmembrane potential V is displayed on the 
reference configuration �0.

6.2.4. Test Case 3
We consider the response of our electromechanical model to either a positive or negative change in the inotropic state of 

the muscle, whose effect is that of increasing and, respectively, decreasing the myocardial contractility. Specifically, starting 
from the baseline, we first increment and then decrement the atrial contractility (Eact,max

LA and Eact,max
RA ) and the ventricular 

contractility (T max
a and Eact,max

RV ) by 10%. The results in Fig. 16 show that an increase in myocardial contractility generates 
an increase of both the maximal left ventricle pressure and the stroke volume.

7. Conclusions

In this paper we presented a novel mathematical and numerical model for the simulation of cardiac electromechanics, 
where the different physical phenomena therein involved are described by means of biophysically detailed core models. We 
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Fig. 12. Evolution of Sff , Sss , Snn during the last cardiac cycle of the baseline simulation.

showed that our 3D-0D closed-loop model fulfills the principle of conservation of mechanical energy. Indeed, the power 
exerted by the cavity pressure in the 3D electromechanical model balances the power exchanged with the 0D circulation 
model at the coupling interface.

We analyzed the mechanical work associated with the different compartments of our circulation model and we proved 
that a balance of mechanical energy is satisfied. This balance holds both when we consider the 0D circulation model alone 
and when we consider the 3D-0D coupled model. We showed that the circulation model considered in this paper can be 
exploited to provide quantitative insights into the heart energy distribution. In particular we employed this model to validate 
the reliability of relationships used in daily clinical practice to estimate the mechanical work performed by the heart. We 
highlighted that these relationships can be accurate when used to assess the ventricular function, but less accurate when 
the mechanical work of the whole myocardium is addressed.

The numerical schemes here proposed are aimed at coupling, in a computationally efficient and accurate manner, mathe-
matical models with a significant degree of biophysical detail. Our computational framework is based on three main pillars, 
namely (1) IMEX schemes to approximate the single core physics; (2) an ANN-based emulator, built by Machine Learning 
on the basis of a collection of pre-computed simulations, that replaces computationally demanding biophysically detailed 
microscale models; (3) a fully partitioned coupling of the different core models. The advantages yielded by these features 
are the following:

• We designed IMEX schemes to minimize the number of nonlinear systems that need to be solved, using implicit solvers 
only for those core models that would otherwise lead to severe CFL restriction on the time step. In particular, our 
numerical scheme allows to update the variables of the ionic and activation models without the need of solving any 
algebraic system (neither nonlinear nor linear), and it allows to update the electrical potential by solving a single 
linear system at each time iteration. The unique nonlinear system of our mathematical model is associated with cardiac 
mechanics, for which explicit or semi-implicit schemes are unstable, unless a very fine time step is employed, because 
of the strong nonlinearities contained in the constitutive law [37].

• In our active stress model we replaced a biophysically detailed, but computationally demanding, subcellular model 
of active force generation by a surrogate model, based on an ANN [35]. This model, which is based on a Machine 
Learning approach from a collection of pre-computed simulations, allows to accurately reproduce the results of the 
high-fidelity model by reducing by a factor of 1’000 the number of internal variables [33,76]. In this way we obtain in 
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Fig. 13. Evolution of Sfs , Sfn and Ssn during the last cardiac cycle of the baseline simulation.

a very favorable trade-off between the biophysical accuracy of the results and the computational cost of our numerical 
simulations.

• We developed a novel scheme to couple the 3D electromechanical model with a 0D circulation model in a fully seg-
regated manner. Our scheme does not incur in the balloon dilemma [50] – which affects segregated schemes wherein 
the displacement update is not aware of the incompressibility constraint of the enclosed fluid, thus possibly leading to 
the failure of the scheme [90,91] – by the introduction of a volumetric constraint on the solution of the mechanical 
problem. In this way, the cavity pressure can be reinterpreted as a Lagrange multiplier associated with the constraint, 
that enforces the coupling between the 0D circulation model and the 3D electromechanical model. At the algebraic 
level, we end up with a saddle-point problem, that we solve by means of Schur complement reduction [51].

• The fully segregated scheme proposed in this paper enables the use of different discretizations in space and time to 
approximate the variables associated with the different core models. This better reflects, at the numerical level, the 
typical space and time scales characterizing the associated physical phenomena. Specifically, we employ coarser spatial 
and temporal discretizations for the elastodynamic problem, which is characterized by larger characteristic temporal 
and spatial scales than the electrophysiological problem [14]. Moreover, it is the most demanding core model from the 
computational viewpoint, as it involves the solution of a nonlinear system and the time-consuming Jacobian matrix 
assembly [15].

Regarding the latter aspect, we employ a parallel and flexible intergrid transfer operator [14,46,47] that permits to 
interpolate the solution of a core model between nested meshes and among possibly different FEM spaces [46].

As a further new contribution, we introduced an algorithm to reconstruct the reference (i.e. stress-free) configuration of 
the left ventricle starting from a stressed configuration obtained from medical images, by solving a suitable inverse problem. 
Determining such configuration is essential to correctly initialize electromechanical simulations. This is especially useful in 
patient-specific scenarios where the end diastolic pressure and/or the end diastolic volume are possibly known.

Finally, we carried out several numerical simulations where we vary different parameters of the model to affect preload, 
afterload and contractility, thus investigating the response of our model for situations of clinical interest. Our model correctly 
reproduces the increase of stroke volume as a consequence of increased preload, coherently with the Frank-Starling law [1], 
thus guaranteeing the matching between the venous return and the cardiac output.

Albeit in this paper we focused on the left ventricle, the 3D-0D coupling that we describe (along with its numerical 
treatment) can be extended to a four chambers representation of the human heart, a model that we will pursue in forth-
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Fig. 14. PV loops of the left atrium (top-right), right atrium (top-left), left ventricle (bottom-right) and right ventricle (bottom-left) during the last cardiac 
cycle of the baseline simulation.

Fig. 15. Pressure (right) and volume (left) over time of the left atrium, right atrium, left ventricle and right ventricle during the last cardiac cycle of the 
baseline simulation.

coming publications. Similarly, the pipeline to reconstruct the reference geometry can be generalized and employed for both 
atria and ventricles.
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Fig. 16. Left ventricle PV loops obtained in the three Test Cases of Sec. 6.2 compared with baseline.

Table 1
Parameters of the electrophysiological model.

Variable Value Unit Variable Value Unit

Conductivity tensor Applied current
σl 0.7643 · 10−4 m2 s−1 Ĩmax

app 35 V s−1

σt 0.3494 · 10−4 m2 s−1 tapp 3 · 10−3 s
σn 0.1125 · 10−4 m2 s−1
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Appendix A. Model parameters

We provide the full list of parameters adopted for the simulations referred as baseline in Sec. 6.2. Specifically, Table 1
contains the parameters related to the electrophysiological model, Table 2 those related to the mechanical model and, finally, 
Table 3 contains the parameters of the circulation model. For the TTP06 model, we adopt the parameters reported in the 
original paper (for M cells) [59]. For the RDQ18 model, we employ the parameters of the original paper [32].

Appendix B. Parameters of the linear and nonlinear solvers

We report the setting used for the linear (Table 4) and nonlinear (Table 5) solvers to produce the results shown in this 
paper.
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Table 2
Parameters of the mechanical model.

Variable Value Unit Variable Value Unit

Constitutive law Boundary conditions

B 50 · 103 Pa K epi
⊥ 2 · 105 Pa m−1

C 0.88 · 103 Pa K epi
‖ 2 · 104 Pa m−1

bff 8 − Cepi
⊥ 2 · 104 Pa s m−1

bss 6 − Cepi
‖ 2 · 103 Pa s m−1

bnn 3 −
bfs 12 − Activation
bfn 3 − T max

a 180 · 103 Pa
bsn 3 − SL0 2 μm
ρs 103 kg m−3

Table 3
Parameters of the circulation model. We always consider a heartbeat period T =
0.8 s.

Variable Value Unit Variable Value Unit

External circulation Cardiac chambers

RSYS
AR 0.8 mmHg s mL−1 Epass

LA 0.09 mmHg mL−1

RPUL
AR 0.1625 mmHg s mL−1 Epass

RA 0.07 mmHg mL−1

RSYS
VEN 0.26 mmHg s mL−1 Epass

RV 0.05 mmHg mL−1

RPUL
VEN 0.1625 mmHg s mL−1 Eact,max

LA 0.07 mmHg mL−1

CSYS
AR 1.2 mL mmHg−1 Eact,max

RA 0.06 mmHg mL−1

CPUL
AR 10.0 mL mmHg−1 Eact,max

RV 0.55 mmHg mL−1

CSYS
VEN 60.0 mL mmHg−1 V 0,LA 4.0 mL

CPUL
VEN 16.0 mL mmHg−1 V 0,RA 4.0 mL

LSYS
AR 5 · 10−3 mmHg s2 mL−1 V 0,RV 10.0 mL

LPUL
AR 5 · 10−4 mmHg s2 mL−1 tLA

C 0.6 s

LSYS
VEN 5 · 10−4 mmHg s2 mL−1 T LA

C 0.104 s

LPUL
VEN 5 · 10−4 mmHg s2 mL−1 T LA

R 0.68 s

Cardiac valves tRA
C 0.56 s

Rmin 0.0075 mmHg s mL−1 T RA
C 0.064 s

Rmax 75000 mmHg s mL−1 T RA
R 0.64 s

tRV
C 0.0 s

T RV
C 0.272 s

T RV
R 0.12 s

Table 4
Tolerances of the linear solver for the different physics.

Physics/Fields Linear solver Abs. tol.

Monodomain model CG 10−10

Activation GMRES 10−10

Mechanics GMRES 10−8

Table 5
Tolerances of the nonlinear solver for the mechanical problem.

Physics/Fields Nonlinear solver Rel. tol. Abs. tol.

Mechanics Quasi-Newton 10−10 10−8

Reference configuration Newton 10−10 10−8
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