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Generic transporters for the linear time dependent quantum
Harmonic oscillator on R

A. Maspero∗

June 25, 2022

Abstract

In this paper we consider the linear, time dependent quantum Harmonic Schrödinger
equation i∂tu = 1

2 (−∂2
x + x2)u+ V (t, x,D)u, x ∈ R, where V (t, x,D) is classical pseudodif-

ferential operator of order 0, selfadjoint, and 2π periodic in time.
We give sufficient conditions on the principal symbol of V (t, x,D) ensuring the existence
of solutions displaying infinite time growth of Sobolev norms. These conditions are generic
in the Fréchet space of symbols. This shows that generic, classical pseudodifferential, 2π-
periodic perturbations provoke unstable dynamics. The proof builds on the results of [36]
and it is based on pseudodifferential normal form and local energy decay estimates. These
last are proved exploiting Mourre’s positive commutator theory.

1 Introduction and main result
In this paper we study the perturbed quantum harmonic oscillator on R

i∂tu = 1
2(−∂2

x + x2)u+ V (t, x,D)u, x ∈ R . (1.1)

We shall always assume that V (t, x,D) is a bounded operator, selfadjoint and 2π-periodic in
time. Our goal is to construct solutions exhibiting unstable behavior in the form of forward
energy cascade. Precisely, we shall exhibit solutions of (1.1) whose Hr-Sobolev norms, r > 0,
grows unbounded in time:

lim sup
t→∞

‖u(t)‖r = +∞ ; (1.2)

here we denoted, for any r ∈ R,

Hr := {u ∈ L2(R,C) : ‖u‖r := ‖Hr
0 u‖L2 <∞}, H0 := 1

2(−∂2
x + x2) . (1.3)

Note that, when V = 0, the unperturbed evolution e−itH0 preserves all norms ‖ · ‖r for all times
and no energy cascade occurs. So the question is whether one can construct an operator V
producing unbounded orbits.

To formalize this concept we shall say (following [36]) that V (t, x,D) is a transporter if (1.1)
has at least one solution fulfilling (1.2) for some r > 0.
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1 INTRODUCTION AND MAIN RESULT 2

In the last few years several transporters for (1.1) were constructed by Delort [13], Bambusi-
Grébert-M.-Robert [5], M. [35], Faou-Raphael [15], Liang, Zhao and Zhou [32], M. [36], Thomann
[42], Luo, Liang and Zhao [33]; we will comment more about these results later on.

For the moment, let us note that all these above are examples of transporters, and it is not
clear neither how to determine if a given operator V (t, x,D) is a transporter nor what happens
for generic operators. More precisely, the following questions are open and, we believe, of great
interest (not only for the linear theory, but also for applications to nonlinear systems):

(Q1) Given an operator V (t, x,D), can we identify sufficient conditions guaranteeing it to be a
transporter?

(Q2) Are transporters rare or common? In other words, how generic are transporters?

In this paper we answer both questions, at least in case V (t, x,D) belongs to the class of classical
pseudodifferential operators of order 0. We identify, for the first time, explicit, sufficient con-
ditions on the principal symbol of V (t, x,D) which guarantee the operator to be a transporter.
We show that these conditions are fulfilled for generic symbols, meaning for a set which is open
and dense in the Fréchet topology of symbols.
As a conclusion, we obtain that generic, 2π-time periodic, classical pseudodifferential perturba-
tions of order 0 produce unbounded orbits – a fact which is, in our opinion, somewhat surprising.

The conditions we identify on V (t, x,D) are actually very simple. Let v0(t, x, ξ) be its princi-
pal symbol. Assume it to be a positively homogeneous function of degree 0 (see Definition 1.1),
and denote by 〈v0〉(x, ξ) its resonant average with respect to the classical flow

φt(x, ξ) := (x cos t+ ξ sin t,−x sin t+ ξ cos t) (1.4)

of the harmonic oscillator h0(x, ξ) := 1
2 (x2 + ξ2), i.e.

〈v0〉(x, ξ) := 1
2π

∫ 2π

0
v0(t, φt(x, ξ)) dt . (1.5)

Our main Theorem 1.3 shows that, if the Poisson bracket between 〈v0〉 and h0 does not vanish
identically outside the origin, i.e.

{〈v0〉, h0} 6≡ 0 in x2 + ξ2 ≥ 1 , (1.6)

then V (t, x,D) is a transporter. Here we use the convention that

{f, g} := ∂ξf · ∂xg − ∂xf · ∂ξg .

The proof of this result, that we will describe at the end of the section, builds on the theory devel-
oped in [36], and it is based on a combination of pseudodifferential normal form and a dispersive
mechanism in the energy space. The dispersion is quantitatively described by local energy decay
estimates, which in turn are proved exploiting Mourre’s theory of positive commutators.

We remark that in [36] we were already able to apply some abstract results to equation (1.1);
however we were able only to deal with operators belonging to the special class of smooth Töplitz
operators1. On the contrary, the main improvement of the current paper is to deal with generic
classical pseudodifferential operators of order 0.

Let us now state precisely our results.
1pseudodifferential operators whose matrix elements (computed on the basis of the Hermite functions) are

constant on the diagonals and decaying fast enough off diagonal
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1.1 Main result
We first define the class of symbols we use.

Definition 1.1. (i) A function f is a symbol of order ρ ∈ R if f ∈ C∞(R2,C) and ∀α, β ∈ N0,
there exists Cα,β > 0 such that

|∂αx ∂
β
ξ f(x, ξ)| ≤ Cα,β (1 + x2 + ξ2)ρ−

β+α
2 .

We will write f ∈ Sρ.
(ii) We shall say that f is a classical symbol of order 0, f ∈ S0

cl, if there exists f0 ∈ C∞(R2,C)
positively homogeneous of degree 0, i.e.

f0(λx, λξ) = f0(x, ξ) , ∀λ ≥ 1, ∀x2 + ξ2 ≥ 1, (1.7)

and µ < 0 such that f − f0 ∈ Sµ. We shall call f0 the principal symbol of f .

Remark 1.2. (i) It is easy to see that S0
cl ⊂ S0.

(ii) With our numerology, the symbol 1
2 (x2 + ξ2) of the harmonic oscillator H0 is of order 1, and

not of order 2 as typically in the literature.
We shall also consider symbols depending periodically from time. We will denote by Ck(T, Sρ),

k ∈ N0, the space of Ck maps f : T 3 t 7→ f(t, ·) ∈ Sρ with finite seminorms

℘k,ρj (f) :=
∑
α+β≤j
0≤`≤k

sup
x,ξ∈R
t∈T

∣∣∣∂αx ∂βξ ∂`tf(t, x, ξ)
∣∣∣

(1 + x2 + ξ2)ρ−
β+α

2
, ∀j ∈ N0 . (1.8)

Such seminorms turn Ck(T, Sρ) into a Fréchet space, with distance

dk,ρ(f, g) :=
∑
j≥0

1
2j

℘k,ρj (f − g)
1 + ℘k,ρj (f − g)

, ∀f, g ∈ Ck(T, Sρ) . (1.9)

Similarly we define the space Ck(T, S0
cl), which we endow with the seminorms and distance in

(1.8), (1.9). Finally we denote by C0
r (T, S0

cl) the subset of C0(T, S0
cl) of real valued symbols.

To a symbol f ∈ Ck(T, Sρ) we associate the operator F (t, x,D) by standard Weyl quantization

(
F (t, x,D)ψ

)
(x) :=

(
OpW (f(t, ·))ψ

)
(x) := 1

2π

∫∫
y,ξ∈R

ei(x−y)ξ f

(
t,
x+ y

2 , ξ

)
ψ(y) dydξ .

We shall say that an operator F is a pseudodifferential operator of order ρ if F = OpW (f) for
some f ∈ Sρ and shall write F ∈ Sρ. If the symbol f ∈ Ck(T, Sρ) we shall write F ∈ Ck(T,Sρ).

Our main result is the following one.

Theorem 1.3. Denote by

V :=
{
v ∈ C0

r (T, S0
cl) : the principal symbol v0 fulfills {〈v0〉, h0} 6≡ 0 in x2 + ξ2 ≥ 1

}
,

(1.10)
where 〈v0〉 is the resonant average (1.5) of v0 and h0(x, ξ) = 1

2 (x2 + ξ2). Then:
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(i) For any v ∈ V , the operator V (t, x,D) := OpW (v) is a transporter for (1.1). More
precisely, ∀r > 0 there exist a solution ψ(t) ∈ Hr of (1.1) and constants C, T > 0 such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t > T. (1.11)

(ii) The set V is generic in C0
r (T, S0

cl); precisely it is open and dense with respect to the metric
d0,0 in (1.9).

Let us comment the result.

1. The set V is strictly contained in C0
r (T, S0

cl). For example, any symbol constant in time
does not belong to V . Indeed if v0(x, ξ) is time independent, then its resonant average 〈v0〉
commutes with h0, as it is easily checked.
However, given a time independent, non constant symbol v0(x, ξ) ∈ S0

cl, it is always possible
to find n ∈ N so that cos(nt)v0(x, ξ) ∈ V , see Lemma 6.1.

2. The open property of item (ii) guarantees that transporters are stable under perturbations.
In particular if v ∈ V , any sufficiently small perturbation of v still belongs to V .
The density instead guarantees that given any symbol in C0

r (T, S0
cl), it is always possible

to perturb it so that the new symbol belongs to V .

3. The property of belonging to V involves only the principal symbol. In particular if v ∈ V ,
one can add arbitrarily large symbols in C0

r (T, Sρ), ρ < 0, and still be in V .

4. The growth of Sobolev norms of Theorem 1.3 is truly an energy cascade phenomenon;
indeed the L2-norm of any solution of (1.1) is preserved for all times, ‖u(t)‖L2 = ‖u(0)‖L2 ,
∀t ∈ R. This is due to the fact that H0 + V (t, x,D) is selfadjoint.

5. Estimate (1.11) is optimal, since it is proved in [13] (see also [34]) that any solution of (1.1)
fulfills the upper bounds

∀r > 0 ∃ C̃r > 0: ‖ψ(t)‖r ≤ C̃r〈t〉r ‖ψ(0)‖r.

6. Energy cascade is a resonant phenomenon; here it happens because V (t, x,D) oscillates at
frequency ω = 1 which resonates with the spectral gaps of the harmonic oscillator. In [4]
we proved that if V (ωt, x,D) is quasiperiodic in time with a Diophantine frequency vector
ω ∈ Rn, then the Sobolev norms of the solutions grow at most as 〈t〉ε, ∀ε > 0 (see [6] for
recent results on 〈t〉ε growth and references therein).
Moreover, with additional restrictions on ω (typically belonging to some Cantor set of large
measure) and assuming V (t, x,D) to be small in size, then all solutions have uniformly
in time bounded Sobolev norms [3, 5]. Therefore the stability/instability of the system
depends strongly on the resonant properties of the frequency ω.

Let us briefly describe the main ingredients of the proof. The first step is to use resonant
pseudodifferential normal form, analogous to the one of Delort [13], to conjugate the original
equation (1.1) to

i∂tϕ =
(
OpW (〈v0〉) + T +R(t)

)
ϕ (1.12)

where 〈v0〉 is the resonant average (1.5) of the principal symbol of V (t, x,D), T is a selfad-
joint, time independent pseudodifferential operator of negative order, and R(t) is an arbitrary
regularizing perturbation. This is done in Section 3.

The second step is the analysis of the effective Hamiltonian

i∂tψ =
(
OpW (〈v0〉) + T

)
ψ (1.13)
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obtained removing R(t) from (1.12). We construct solutions of (1.13) exhibiting dispersion in
the energy space, i.e. solutions ψ(t) whose negative H−r-Sobolev norm, r > 0, decays in time at
a polynomial rate:

‖ψ(t)‖−r ≤
C

〈t〉r
‖ψ(0)‖r, ∀t ∈ R . (1.14)

Hence, by the unitarity of the flow, these solutions have unbounded growth of positive Sobolev
norms. Then it is not difficult to construct solutions of the complete system (1.12) exhibiting
Sobolev norms explosion.

To prove (1.14) we study the spectral properties of V0 := OpW (〈v0〉). Exploiting Mourre’s
commutator theory [37], we show that V0 has absolutely continuous spectrum in an interval
I ⊂ R, over which it fulfills the strict Mourre estimate

gI(V0) i[V0, A] gI(V0) ≥ ρ gI(V0)2 (1.15)

for some ρ > 0, A ∈ S1 and g ∈ C∞c (R,R≥0) with g ≡ 1 on I. This in turn implies, by Sigal-
Soffer theory [40], that V0 fulfills dispersive estimates in the frequency space in the form of local
energy decay estimates. The same is true also for V0 + T , as Mourre estimates are stable by
pseudodifferential operators of negative order.

The key difficulty in applying Mourre-Sigal-Soffer theory is that the operator A entering the
Mourre estimate (1.15) is not given, but has to be constructed. In particular we produce A so
that the principal symbol of the operator on the left of (1.15) is

gI(〈v0〉)2 {〈v0〉, h0}2 . (1.16)

Then condition (1.6) allows to select an interval I so that the function in (1.16) is strictly positive,
and then we deduce (1.15) exploiting the strong G̊arding inequality. This is done in Section 4.

Let us compare our result with the previous ones in the literature. After the pioneering work
by Bourgain [9], Delort [13] constructs the first example of a transporter for (1.1), which is also
a classical pseudodifferential operator of order 0, and a solution whose Hr-norm grows as tr.
Bambusi-Grébert-M.-Robert [5] constructs an unbounded transporter and a solution growing as
t2r. The author [35] constructs a universal transporter, meaning a perturbation V (t, x,D) such
that all non trivial solutions of (1.1) fulfill (1.2). Faou-Raphael [15] deal with the very interesting
case of a multiplication operator V (t, x) (and not a pseudodifferential operator) and construct a
solution whose Hr-norm grows at a logarithmic speed. Thomann [42] constructs a transporter
for the 2D Harmonic oscillator on the Bargmann-Fock space. Finally Liang, Zhao and Zhou
[32] and Luo, Liang and Zhao [33] consider operators V (ωt, x,D) which are the quantization of
polynomial symbols of order at most 2 and depend quasi-periodically in time with a frequency
ω ∈ Rd. They are able to completely describe the quantum dynamics according to the resonant
properties of ω, and even obtain solutions growing at the unusual speed2 of t4s. Finally we
mention Haus-M. [27] which considers anharmonic oscillators.

Before closing this introduction, we mention that constructing solutions with unbounded
orbits in nonlinear Schrödinger-like equations is very difficult. Long time unstable orbits have
been constructed for the nonlinear Schrödinger equation on T2 [10, 23, 24, 25, 22, 21, 19], but
truly unbounded orbits are known only for the cubic Szegő equation on T [16, 17] and the cubic
NLS on R× T2 [26].

2note that in [33] the space Hs := D(Hs/2
0 ), differently from (1.3), so in our notation one has to substitute

s 2s in [33]
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2 Pseudodifferential operators
In this section we collect some results about pseudodifferential operators in Sρ.

Symbolic calculus. This first class of results regards very basic properties of pseudodifferential
operators and can be found in classical texts such as [29, 39].

Theorem 2.1. Let a ∈ Sρ, b ∈ Sµ, ρ, µ ∈ R. Then

(i) Action: For any s ∈ R, there are C,M > 0 such that

‖OpW (a)u‖s−ρ ≤ Cs ℘ρM (a) ‖u‖s.

(ii) Symbolic calculus: One has OpW (a)∗ = OpW (a).
There exists a symbol c ∈ Sρ+µ such that OpW (a) ◦OpW (b) = OpW (c). Moreover c− ab ∈
Sρ+µ−1 and

∀j ∈ N0, ∃N,C > 0 s.t. ℘ρ+µ−1
j (c− ab) ≤ C ℘ρN (a)℘µN (b) .

There exists a symbol d ∈ Sρ+µ−1 such that i[OpW (a) ,OpW (b)] = OpW (d). Moreover
d− {a, b} ∈ Sρ+µ−3 and

∀j ∈ N0, ∃N,C > 0 s.t. ℘ρ+µ−3
j (d− {a, b}) ≤ C ℘ρN (a)℘µN (b) .

(iii) Exact Egorov theorem: One has

eiτH0 OpW (a) e−iτH0 = OpW (a ◦ φτ ) , ∀τ ∈ R

where φτ is the flow (1.4). In particular t 7→ a ◦ φt ∈ Ck(T, Sρ), ∀k ∈ N0, and

∀j ∈ N0 ∃N,C > 0 s.t. ℘ρj (a ◦ φ
t) ≤ C ℘ρN (a) .

(iv) Compactness: Let ρ < 0. Then OpW (a) is compact.

Remark 2.2. If v ∈ C0(T, Sρ), ρ ∈ R, then its resonant average 〈v〉(x, ξ) (defined in (1.5)) belongs
to Sρ, as one checks using the explicit expression

〈v〉(x, ξ) := 1
2π

∫ 2π

0
v(t, x cos t+ ξ sin t,−x sin t+ ξ cos t) dt . (2.1)

Note also that 〈v〉 is time-independent. If v is real valued, so is 〈v〉.

Flows. The second class of results regards the flow generated by pseudodifferential operators.
For the proofs we refer to [4].

Lemma 2.3. Assume that X ∈ C1(T,S1) is selfadjoint. Then the following holds true.

(i) Flow: e−iτX(t) extends to an operator in L(Hr) ∀r ∈ R, and moreover there exist cr, Cr > 0
s.t.

cr‖ψ‖r ≤ ‖e−iτX(t)ψ‖r ≤ Cr‖ψ‖r , ∀t ∈ R , ∀τ ∈ [0, 1] .
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(ii) Conjugation: Let H(t) be a time dependent selfadjoint operator. Assume that ψ(t) =
e−iX(t)ϕ(t) then

i∂tψ = H(t)ψ ⇐⇒ i∂tϕ = H+(t)ϕ

where

H+(t) := eiX(t) H(t) e−iX(t) −
∫ 1

0
eisX(t) (∂tX(t)) e−isX(t) ds .

(iii) Lie expansion: Let X ∈ Sρ with ρ < 1 and H ∈ Sm, m ∈ R, both selfadjoint. Then
eiX H e−iX ∈ Sm, it is selfadjoint and for any M ≥ 1 we have

eiX H e−iX =
M∑
`=0

i`

`! ad`X(H) +RM , (2.2)

where adX(H) := [X,H] and

RM := iM+1

M !

∫ 1

0
(1− τ)M eiτX adM+1

X (H) e−iτX dτ ∈ Sm−(M+1)(1−ρ)

is selfadjoint.

Remark 2.4. If X ∈ Ck(T,Sρ), H ∈ Ck(T,Sm) with ρ < 1 and m ∈ R, then the remainder
RM (t) in formula (2.2) belongs to Ck(T,Sm−(M+1)(1−ρ)).

Functional calculus. The next results concern the functional calculus of pseudodifferential
operators in Sρ. Standard references are the papers [28, 12] and the books [38, 1].

Given g ∈ C∞c (R,R), we define its almost analytic extension as follows: for any N ∈ N, put

g̃N : R2 → C, g̃N (x, y) :=
(

N∑
`=0

g(`)(x) (iy)`

`!

)
τ

(
y

〈x〉

)
where τ ∈ C∞(R,R≥0) is a cut-off function fulfilling τ(s) = 1 for |s| ≤ 1 and τ(s) = 0 for |s| ≥ 2.
Then, given H a selfadjoint operator, one defines g(H) via the Helffer-Sjöstrand formula

g(H) := − 1
π

∫
R2

∂g̃N (x, y)
∂z

(x+ iy − H)−1dx dy , ∂

∂z
:= 1

2

(
∂

∂x
+ i ∂

∂y

)
. (2.3)

The operator g(H) is independent of N ∈ N, see [12].

Theorem 2.5 (Functional calculus). Let g ∈ C∞c (R,R).

(i) Let v ∈ S0 be real valued. The operator g(OpW (v)), defined via (2.3), belongs to S0.
Moreover g(OpW (v))−OpW (g(v)) ∈ S−1.

(ii) Let A,B ∈ L(H) be selfadjoint. If A− B is compact, so is g(A)− g(B).
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Strong G̊arding inequality. The next result is the strong G̊arding inequality for symbols in
S0.

Theorem 2.6 (Strong G̊arding inequality). Let a ∈ S0 and assume there exists R > 0 such that

a(x, ξ) ≥ 0, ∀x2 + ξ2 ≥ R . (2.4)

Then there exists C > 0 such that

〈OpW (a)u, u〉 ≥ −C‖u‖2
−1, ∀u ∈ L2 . (2.5)

This result is probably well known but we couldn’t find a proof of this exact statement in the
literature, so we prove it in Appendix A.1.

Essential spectrum. In this last paragraph we characterize the essential spectrum of pseu-
dodifferential operators with symbols in S0.

Theorem 2.7. Let v ∈ S0 be real valued. Then

σess(OpW (v)) = {λ ∈ R : ∃ (xj , ξj)→∞ s.t. v(xj , ξj)→ λ} . (2.6)

We prove this result in Appendix A.2.

3 Pseudodifferential normal form
The first step of our proof is to use pseudodifferential normal form to extract from the original
equation (1.1) an effective Hamiltonian having as leading term the operator OpW (〈v0〉). Precisely
we shall prove the following result.

Proposition 3.1. Consider equation (1.1) with V (t, x,D) = OpW (v(t, ·)) and v ∈ C0
r (T, S0

cl).
There exists δ > 0 such that for any N ∈ N the following holds true. There exists a change of
coordinates UN (t), unitary in L2 and fulfilling

∀r ≥ 0 ∃ cr, Cr > 0: cr‖ϕ‖r ≤ ‖UN (t)±ϕ‖r ≤ Cr‖ϕ‖r, ∀t ∈ R, (3.1)

such that u(t) solves (1.1) if and only if ϕ(t) := UN (t)u(t) solves

i∂tϕ =
(
OpW (〈v0〉) + TN +RN (t)

)
ϕ (3.2)

where 〈v0〉 is the resonant average of the principal symbol v0 of v, TN ∈ S−δ is time independent
and selfadjoint and RN ∈ C0(T,S−N−δ) is selfadjoint ∀t.

The proof of the proposition is based on a series of change of coordinates, and at each step
we shall solve a simple homological equation, which we now describe:

Lemma 3.2. Assume that H ∈ C0(T,Sm), m ∈ R. There exists X ∈ C1(T,Sm) such that

H(t)− 1
2π

∫ 2π

0
H(s) ds = ∂tX(t) . (3.3)

If H(t) is selfadjoint for any t, so is X(t).
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Proof. We solve (3.3) at the level of symbols; we put H(t) = OpW (h(t, ·)) with h ∈ C0(T, Sm)
and look for X(t) = OpW (χ(t, ·)) with a symbol χ ∈ C1(T, Sm) to be determined. Then (3.3)
reads

h(t, x, ξ)− 1
2π

∫ 2π

0
h(s, x, ξ) ds = ∂tχ(t, x, ξ) ,

whose solution is readily given by

χ(t, x, ξ) :=
∫ t

0

(
h(s, x, ξ)− 1

2π

∫ 2π

0
h(s1, x, ξ) ds1

)
ds .

One verifies that χ ∈ C1(T, Sm). Finally if H(t) is selfadjoint, its symbol h(t, ·) is real valued,
so is χ(t, ·) and thus X(t) is selfadjoint.

Proof of Proposition 3.1. First we gauge away H0, performing the change of variables u =
e−itH0ψ. Then ψ solves i∂tψ = eitH0 OpW (v(t, ·)) e−itH0ψ.
Next recall that, by definition of the class S0

cl, the symbol v decomposes as

v(t, ·) = v0(t, ·) + v−µ(t, ·)

with v0(t, ·) positively homogeneous of degree 0 and v−µ ∈ C0
r (T, S−µ) for some µ > 0. So we

decompose
i∂tψ = (V(t) +R(t))ψ

with
V(t) := eitH0 OpW (v0(t, ·)) e−itH0 , R(t) := eitH0 OpW (v−µ(t, ·)) e−itH0 .

Note that V ∈ C0(T,S0) and R ∈ C0(T,S−µ), both selfadjoint ∀t.
Now we proceed inductively, performing several changes of coordinates which remove the

oscillating part order by order. Let us describe the first step. We perform the change of variables
ψ = e−iX1(t)ϕ where X1(t) ∈ C1(T,S0), selfadjoint ∀t, to be determined. By Lemma 2.3, ϕ
fulfills the Schrödinger equation i∂tϕ = H1(t)ϕ with

H1(t) := eiX1(t) (V(t) +R(t)) e−iX1(t) −
∫ 1

0
eisX1(t) (∂tX1(t)) e−isX1(t) ds .

Then a Lie expansion, see (2.2), gives

H1(t) = V(t)− ∂tX1(t) +R1(t), R1 ∈ C0(T,S−δ), selfadjoint ∀t , (3.4)

with
δ := min(1, µ) > 0 .

Lemma 3.2 allows us to choose X1 ∈ C1(T,S0), selfadjoint ∀t, s.t.

V(t)− 1
2π

∫ 2π

0
V(s) ds = ∂tX1(t) .

With this choice, and exploiting Egorov’s Theorem, equation (3.4) reduces to

H1(t) = 1
2π

∫ 2π

0
V(s) ds+R1(t) = 1

2π

∫ 2π

0
OpW (v0(s, φs(x, ξ))) ds+R1(t)

= OpW (〈v0〉) +R1(t) .
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Note also that the map e−iX1(t) fulfills an estimate like (3.1) thanks to Lemma 2.3.
Then we iterate this procedure. Assume that at the N -th step we have the equation

i∂tϕ =
(

OpW (〈v0〉) + TN +RN (t)
)
ϕ =: HN (t)ϕ (3.5)

with TN ∈ S−δ selfadjoint and time independent, and RN ∈ C0(T,S−N−δ) selfadjoint ∀t. The
change of variables ϕ = e−iXN+1(t)w, with a certain XN+1 ∈ C1(T,S−N−δ) selfadjoint and to be
determined, conjugates (3.5) to i∂tw = HN+1(t)w with

HN+1(t) = OpW (〈v0〉) + TN +RN (t)− ∂tXN+1(t) +RN+1(t) , (3.6)

with RN+1 ∈ C0(T,S−(N+1)−δ) selfadjoint ∀t. We exploit again Lemma 3.2 to find XN+1 with
the wanted properties solving

∂tXN+1 = RN (t)− 1
2π

∫ 2π

0
RN (s)ds .

Thus HN+1(t) in (3.6) becomes

HN+1(t) = OpW (〈v0〉) + TN+1 +RN+1(t), TN+1 := TN + 1
2π

∫ 2π

0
RN (s) ds .

Clearly TN+1 ∈ S−δ, it is selfadjoint and time-independent. This proves the inductive step.
Finally we put UN (t) := eiXN (t) · · · eiX1(t)eitH0 ; estimate (3.1) follows from Lemma 2.3.

4 Mourre estimates
In this section we study the spectral properties of the operator OpW (〈v0〉), which is the leading
term of equation (3.2). In particular we prove that its essential spectrum contains a nontrivial
interval I0 and, over a subinterval I ⊂ I0, it fulfills a Mourre estimate. Then Mourre theory
[37] guarantees that OpW (〈v0〉) has absolutely continuous spectrum in I, and therefore we might
expect dispersive behavior. More precisely we prove the following result:

Proposition 4.1. Let v ∈ V (see (1.10)) and v0 be its principal symbol. Denote by 〈v0〉 ∈ S0

its resonant average (see (1.5)) and V0 := OpW (〈v0〉) . The following holds true.

(i) The spectrum σ
(
V0
)

contains a closed interval I0.

(ii) There exist A ∈ S1 selfadjoint, an open interval I ⊂ I0, a function gI ∈ C∞c (R,R≥0) with
gI ≡ 1 over I such that

gI
(
V0
)

i[V0, A] gI
(
V0
)
≥ ρ gI

(
V0
)2 + K (4.1)

for some ρ > 0 and K a compact operator.

Notation: In the following, we shall denote by K a general compact operator on L2, which
might change from line to line. We shall also constantly use that pseudodifferential operators in
S−µ, µ > 0, are compact on L2.

In order to prove Proposition 4.1 we start with some preparation. We shall denote by A : T×
R>0 → R2 \ {0}, (ϑ, I)→ (x, ξ) the action-angle change of coordinates defined by

x =
√

2I sin(ϑ), ξ =
√

2I cos(ϑ), ∀(x, ξ) 6= (0, 0) . (4.2)
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Given a function f ∈ C∞(R2,C), we shall denote by f̃ := f ◦ A the function f expressed in
action angle coordinates (4.2). Note that since (4.2) is a canonical transformation, one has

{̃f, g} = {f̃ , g̃} =: ∂I f̃ ∂ϑg̃ − ∂ϑf̃ ∂I g̃ . (4.3)

Lemma 4.2. Assume that f ∈ C∞(R2,C) is positively homogeneous of degree 0, i.e. it fulfills
(1.7). Then

f̃(ϑ, I) = f̃(ϑ, 1), ∀I > 1
2 . (4.4)

In particular ∂I f̃(ϑ, I) = 0 for any I > 1
2 .

Proof. Being f positively homogeneous of degree 0,

f̃(ϑ, I) = f(
√

2I sin(ϑ),
√

2I cos(ϑ)) = f(sin(ϑ), cos(ϑ)) = f̃(ϑ, 1
2) , ∀I ≥ 1

2 ,

implying in particular the identity (4.4).

Now we begin the proof of Proposition 4.1, which is splitted in several lemmas.

Lemma 4.3. Let v ∈ C0
r (T, S0

cl) and denote by v0 its principal symbol. Then

(i) 〈v0〉 is real valued and positively homogeneous of degree 0, i.e.

〈v0〉(λx, λξ) = 〈v0〉(x, ξ), ∀λ ≥ 1, ∀x2 + ξ2 ≥ 1 . (4.5)

(ii) If furthermore v ∈ V , then

I0 :=
[

min
x2+ξ2=1

〈v0〉(x, ξ), max
x2+ξ2=1

〈v0〉(x, ξ)
]
⊆ σess

(
V0
)

(4.6)

and it has nonempty interior.

Proof. (i) It follows from the explicit expression (2.1) using that v0(t, ·) is real valued and posi-
tively homogeneous of degree 0.
(ii) By Theorem 2.7

σess
(
V0
)

= {λ ∈ R : ∃ (xj , ξj)→∞ s.t. 〈v0〉(xj , ξj)→ λ} .

Since 〈v0〉 is positively homogeneous of degree 0 and definitively one has x2
j + ξ2

j ≥ 1, we have
that

〈v0〉(xj , ξj) = 〈v0〉(
xj

x2
j + ξ2

j

,
ξj

x2
j + ξ2

j

) ,

and we deduce that

σess
(
V0
)

=
{
λ ∈ R : ∃ {(x̃j , ξ̃j)}j≥1 with x̃2

j + ξ̃2
j = 1 ∀j s.t. 〈v0〉(x̃j , ξ̃j)→ λ

}
.

Finally, since the function 〈v0〉 is smooth, this set corresponds to the image of 〈v0〉|x2+ξ2=1 and
therefore

σess(V0) = [ min
x2+ξ2=1

〈v0〉(x, ξ), max
x2+ξ2=1

〈v0〉(x, ξ)] = I0.

To prove that I0 is a nontrivial interval, it is sufficient to show that 〈v0〉 is not constant on
x2 + ξ2 = 1. Assume by contradiction that 〈v0〉 is constant on the circle; then by homogeneity,
it is constant on the whole set x2 + ξ2 ≥ 1. But then {h0, 〈v0〉} ≡ 0 in x2 + ξ2 ≥ 1, contradicting
the assumption that v ∈ V .
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Next define the operator

A := OpW (a) , a := {〈v0〉, h0}h0 ∈ S1 , real valued. (4.7)

Clearly A ∈ S1 and it is selfadjoint.

Lemma 4.4. Let A be defined in (4.7). For any I ⊂ I0 and gI ∈ C∞c (R,R≥0) with gI ≡ 1 over
I there exists a compact operator K such that

gI(V0) i[V0, A] gI(V0) = OpW
(
gI(〈v0〉)2 {〈v0〉, h0}2)+ K . (4.8)

Proof. By symbolic calculus we get

i[V0, A] = OpW ({〈v0〉, a}+ r−2) , r−2 ∈ S−2, real valued . (4.9)

Consider now the operator gI(V0). Using Lemma 2.5 we write

gI(V0) = OpW (gI(〈v0〉)) + K (4.10)

with K a compact operator. We use the expressions (4.9) and (4.10), the fact that {〈v0〉, a},
gI(〈v0〉) belong to S0 and symbolic calculus to finally get

gI(V0) i[V0, A] gI(V0) = OpW
(
gI(〈v0〉)2 {〈v0〉, a}

)
+ K (4.11)

with K compact. Next we compute {〈v0〉, a}. Using (4.7),

{〈v0〉, a} = {〈v0〉, h0}2 + w, w := {〈v0〉, {〈v0〉, h0}}h0.

We claim that w ∈ C∞c (R2,R) ⊂ S−∞; then (4.8) follows by inserting this decomposition in
(4.11). To prove that w ∈ C∞c (R2,R) we pass to action-angle variables defined in (4.2). As

h̃0 = I , ˜{〈v0〉, h0} = −∂ϑ〈̃v0〉(ϑ, I) , (4.12)

we get

˜{〈v0〉, {〈v0〉, h0}} = {〈̃v0〉, {〈̃v0〉, I}}
(4.3)= −∂〈̃v0〉

∂I

∂2〈̃v0〉
∂ϑ2 + ∂〈̃v0〉

∂ϑ

∂2〈̃v0〉
∂I∂ϑ

.

Since 〈v0〉 is positively homogeneous of degree 0 (see (4.5)), by Lemma 4.2 we have that ∂I 〈̃v0〉(ϑ, I) =
∂2
Iϑ〈̃v0〉(ϑ, I) = 0 for any I > 1

2 , proving that ˜{〈v0〉, {〈v0〉, h0}} ∈ C∞c (R2 \ {0},R). Hence also
w ∈ C∞c (R2,R).

The next one is the most important lemma, which proves the commutator estimate.

Lemma 4.5. There exist an interval I ⊂ I0, a function gI ∈ C∞c (R,R≥0) with supp gI ⊂ I0,
gI ≡ 1 over I and numbers ρ, C > 0 such that

〈OpW
(
gI(〈v0〉)2 {〈v0〉, h0}2)u, u〉 ≥ ρ 〈OpW

(
gI(〈v0〉)2)u, u〉 − C‖u‖2

−1, ∀u ∈ L2 . (4.13)

Proof. We claim the existence of I ⊂ I0 and ρ > 0 such that

gI(〈v0〉)2 {〈v0〉, h0}2 ≥ ρ gI(〈v0〉)2, ∀x2 + ξ2 ≥ 1. (4.14)

Then the Strong G̊arding inequality in Theorem 2.5 gives (4.13).
To prove (4.14) we pass to action-angle variables (4.2). Using (4.12) the left-hand-side of (4.14)
reads

gI

(
〈̃v0〉(ϑ, I)

)2 [
∂ϑ〈̃v0〉(ϑ, I)

]2
.
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By Lemma 4.2, 〈̃v0〉(ϑ, I) ≡ 〈̃v0〉(ϑ, 1) for any I > 1
2 . Moreover, as 〈̃v0〉(ϑ) := 〈̃v0〉(ϑ, 1) is a

smooth function defined on T, Sard’s theorem implies that the set C := {ϑ ∈ T : ∂ϑ〈̃v0〉(ϑ) =
0} of critical values of 〈̃v0〉 has image 〈̃v0〉(C) of zero measure. Since the image of 〈̃v0〉(·) ≡
〈v0〉|x2+ξ2=2 = 〈v0〉|x2+ξ2=1 is the nontrivial interval I0 (see (4.6)), I0 \ 〈̃v0〉(C) is a positive
measure set and contains only regular values. So fix λ ∈ I0 \ 〈̃v0〉(C). The set 〈̃v0〉

−1
(λ) is a

compact set of isolated points, thus finitely many; denote them by {ϑa}da=1. Since ∂ϑ〈̃v0〉(ϑa) 6= 0
for any a = 1, . . . , d, we can find neighbors Ua ⊂ T of ϑa and a neighbor V ⊂ I0 of λ such that

(i) 〈̃v0〉 : Ua → V is a diffeomorphism for any a = 1, . . . , d,

(ii) 〈̃v0〉
−1

(V) = ∪aUa,

(iii) there exists ρ > 0 such that min
ϑ∈∪aUa

∣∣∣∂ϑ〈̃v0〉(ϑ)
∣∣∣ ≥ √ρ .

Now take an interval I ⊂ V with λ ∈ I. Take also gI ∈ C∞c (R,R≥0) with gI ≡ 1 on I and
supp gI ⊂ V. Using (ii) above, we have that

(ϑ, I) ∈ supp
(
gI
(
〈̃v0〉(ϑ, I)

))
∩ {I > 1

2} ⇒ ϑ ∈
d⋃
a=1
Ua .

In particular in the set supp
(
gI
(
〈̃v0〉(ϑ, I)

))
∩ {I > 1

2} the function 〈̃v0〉(ϑ, I) ≡ 〈̃v0〉(ϑ) fulfills
(iii) above. We deduce that

g2
I

(
〈̃v0〉(ϑ, I)

) (
∂ϑ〈̃v0〉(ϑ, I)

)2
≥ ρ g2

I

(
〈̃v0〉(ϑ, I)

)
, ∀(ϑ, I) ∈ T× {I > 1

2} ,

proving (4.14).

We can finally prove Proposition 4.1.

Proof of Proposition 4.1. By Lemmata 4.4 and 4.5, we have

〈gI(V0) i[V0, A] gI(V0)u, u〉 ≥ ρ〈OpW
(
gI(〈v0〉)2)u, u〉+ 〈(K− CH−2

0 )u, u〉 (4.15)

with K compact. Now by symbolic and functional calculus

OpW
(
gI(〈v0〉)2) =

(
OpW (gI(〈v0〉))

)2
+ S−1 (4.10)= gI(V0)2 + K1

with K1 a compact operator. Inserting in (4.15) gives the claimed Mourre estimate (4.1).

5 Dynamics of the effective equation
In this section we consider the effective equation obtained removing RN (t) from (3.2), namely

i∂tϕ = HNϕ, HN := OpW (〈v0〉) + TN , (5.1)

with TN ∈ S−δ, δ > 0, see Proposition 3.1. Recall that HN is selfadjoint and time independent.
We shall construct a solution of (5.1) with decaying negative Sobolev norms, and thus, exploiting
the L2 conservation, also with growing Sobolev norms.
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Proposition 5.1 (Decay of negative Sobolev norms). Consider the operator HN in (5.1). For
any k ∈ N, there exist a nontrivial solution ϕ(t) ∈ Hk of (5.1) and ∀r ∈ [0, k] a constant Cr > 0
such that

‖ϕ(t)‖−r ≤ Cr〈t〉−r ‖ϕ(0)‖r , ∀t ∈ R . (5.2)

Remark 5.2. As HN is selfadjoint, the conservation of the L2-norm and Cauchy-Schwarz inequal-
ity give

‖ϕ(0)‖2
0 = ‖ϕ(t)‖2

0 ≤ ‖ϕ(t)‖r ‖ϕ(t)‖−r , ∀t ∈ R ,

so (5.2) implies the growth of positive Sobolev norms:

‖ϕ(t)‖r ≥
1
Cr

‖ϕ(0)‖2
0

‖ϕ(0)‖r
〈t〉r , ∀t ∈ R . (5.3)

Proposition 5.1 will follow from the following abstract Sigal-Soffer local energy decay estimate:

Theorem 5.3 (Local energy decay estimate). Let (H, ‖ · ‖H) be a Hilbert space. Let H ∈ L(H)
and A be both selfadjoint and with D(A) ∩H dense in H. Fix k ∈ N and assume that

(M1) the operators adnA(H), n = 1, . . . , 4k + 2, can all be extended to bounded operators on H.

(M2) Strict Mourre estimate: there exist an open interval I ⊂ R with compact closure and a
function gI ∈ C∞c (R,R≥0) with gI ≡ 1 on I such that

gI(H) i[H,A] gI(H) ≥ θgI(H)2

for some θ > 0.

Then for any interval J ⊂ I, any function gJ ∈ C∞c (R,R≥0) with supp gJ ⊂ I, gJ = 1 on J ,
there exists C > 0 such that

‖〈A〉−k e−iHt gJ (H)ψ‖H ≤ C〈t〉−k‖〈A〉k gJ (H)ψ‖H, ∀t ∈ R .

The theorem goes back to the works of [40, 41, 31], see also [30, 2, 14, 18, 20] for extensions
and generalizations. A proof of this exact statement can be found in [36], Appendix C.

Proof of Proposition 5.1. We apply Theorem 5.3 with H = L2, H = HN in (5.1) and A = A
in (4.7). Assumption (M1) is verified since A ∈ S1 and HN ∈ S0. To check (M2) we work
perturbatively from the Mourre estimate (4.1). Again we shall denote by K a general compact
operator in L2 which might change from line to line. To shorten notation, we shall also write
V0 := OpW (〈v0〉).

First, as HN = V0 + TN with TN ∈ S−δ, the operator [TN , A] ∈ S−δ is compact, so from
(4.1) we get

gI(V0) i[HN , A] gI(V0) ≥ ρ gI(V0)2 + K
with K compact. Next, by Lemma 2.5, gI(HN )− gI(V0) is compact and therefore we get that

gI(HN ) i[HN , A] gI(HN ) = gI(V0) i[HN , A] gI(V0) + K
≥ ρ gI(V0)2 + K = ρ gI(HN )2 + K

This proves that HN fulfills a Mourre estimate over I. It is standard that one can shrink the
interval I to a subinterval I1 to obtain the strict Mourre estimate

gI1(HN ) i[HN , A] gI1(HN ) ≥ ρ

2 gI1(HN )2 ,
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see e.g. the arguments in [37] (or also Step 1 of Lemma 3.13 of [36]). This proves (M2). So
we apply Theorem 5.3 and obtain that for any interval J ⊂ I1, any function gJ ∈ C∞c (R,R≥0)
with supp gJ ⊂ I1, gJ = 1 on J ,

‖〈A〉−k e−iHN t gJ (HN )ϕ‖0 ≤ C〈t〉−k‖〈A〉k gJ (HN )ϕ‖0, ∀t ∈ R. (5.4)

Then, since H−k0 〈A〉k, 〈A〉kH
−k
0 ∈ S0, using (5.4) we deduce

‖e−itHN gJ (HN )ϕ‖−k ≤ Ck〈t〉−k‖gJ (HN )ϕ‖k ,

and interpolating with ‖e−itHNϕ‖0 = ‖ϕ‖0 yields

‖e−itHN gJ (HN )ϕ‖−r ≤ Cr〈t〉−r‖gJ (HN )ϕ‖r , ∀t ∈ R , ∀ϕ ∈ Hr , ∀r ∈ [0, k] .

The last step is to prove that the estimate is not trivial, namely that one can choose ϕ(0) :=
gJ (HN )ϕ ∈ Hr \ {0}. Regarding the regularity, note that gJ (HN )ϕ ∈ Hr provided ϕ ∈ Hr.
Hence it suffices to show that gJ (HN )Hr 6= {0}. By the density of Hr in H ≡ L2, this follows
provided gJ (HN )H 6= {0}. So assume by contradiction that gJ (HN )H = {0}. By Weyl’s
theorem, being TN compact,

σ(HN ) ⊇ σess(HN ) = σess(V0)
(4.6)
⊇ I0 ⊇ J .

Hence the spectral projector EJ (HN ) ofHN over J fulfills EJ (HN )H 6= {0}. Since, by functional
calculus, EJ (HN ) = EJ (HN )gJ (HN ) (which follows from 1J (λ) = 1J (λ)gJ (λ) ∀λ ∈ R, 1J
being the indicator function over the interval J ), we get

{0} = EJ (HN )gJ (HN )H = EJ (HN )H 6= {0}

obtaining a contradiction. Hence gJ (HN )H 6= {0}.

6 Proof of the main theorem
In this section we prove Theorem 1.3.

Proof of (i). It follows exactly as in [36], so we just sketch the arguments for completeness.
Let r > 0 be given in Theorem 1.3. Fix N, k ∈ N with N ≥ 2r + 2 and k ≥ δ + N − r. Take a
solution ϕ(t) of equation (5.1) fulfilling the decay (5.2) up to regularity k. Defining UN (t, s) the
linear propagator of HN +RN (t), one checks that

φ(t) := ϕ(t) + i
+∞∫
t

UN (t, s)RN (s)ϕ(s) ds =: ϕ(t) + w(t)

solves equation (3.2), provided w(t) is well defined. Using that, by Theorem 1.5 of [34], UN (t, s) ∈
L(Hr) with ‖UN (t, s)‖L(Hr) ≤ Cr 〈t− s〉r, ∀t, s ∈ R and RN ∈ C0(T,S−N−δ), we get

‖w(t)‖r ≤ C
+∞∫
t

〈t− s〉r‖RN (s)ϕ(s)‖r ds ≤ C
+∞∫
t

〈t− s〉r ‖ϕ(s)‖−(δ+N−r) ds

≤C ‖ϕ0‖δ+N−r

+∞∫
t

〈t− s〉r 1
〈s〉δ+N−r ds ≤ C ‖ϕ0‖k〈t〉−1 .
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Using also (5.3) we deduce that ‖φ(t)‖r ≥ ‖ϕ(t)‖r − ‖w(t)‖r ≥ C〈t〉r for t sufficiently large.
Finally ψ(t) = UN (t)−1φ(t) solves (1.1) and has polynomially growing Sobolev norms as

(1.11), proving item (i).

Proof of (ii). We show that the set V is open and dense in C0
r (T, S0

cl).
Open: We show that for any v ∈ V , there is ε,M > 0 such that any w ∈ C0

r (T, S0
cl) fulfilling

℘0,0
M (v − w) < ε belongs to V . In particular this last condition is achieved provided d0,0(v, w) is

small enough.
First of all decompose v = v0 + v−µ with v0 the principal symbol of v and v−µ ∈ C0

r (T, S−µ),
µ > 0. As 〈v0〉 is positively homogeneous of degree 0 (see (4.5)), we put

% := max
x2+ξ2≥1

|{〈v0〉, h0}| = max
ϑ∈T

∣∣∣∂ϑ〈̃v0〉(ϑ, 1)
∣∣∣ > 0 ;

note that % is strictly positive since, by assumption, {〈v0〉, h0} is not identically 0. Denote by ϑ%
a point in T where the maximum is attained.

Decompose also w = w0+w−µ′ with w0 the principal symbol and w−µ′ ∈ C0
r (T, S−µ′), µ′ > 0.

To prove that w ∈ V , it suffices to show that {〈w0〉, h0} is not identically zero in x2 + ξ2 ≥ 1.
We write

{〈w0〉, h0} = {〈v0〉, h0}+ {〈w0 − v0〉, h0}
= {〈v0〉, h0}+ {〈w − v〉, h0} − {〈w−µ′ − v−µ〉, h0} (6.1)

We evaluate (6.1) at the point

x :=
√

2R sin(ϑδ), ξ :=
√

2R cos(ϑδ) (6.2)

where R > 0 will be chosen later on sufficiently large.
By the very definition of (x, ξ) we have

{〈v0〉, h0}(x, ξ) = % . (6.3)

Next we consider the second term of (6.1); by symbolic calculus

sup
x,ξ∈R

|{〈w − v〉, h0}(x, ξ)| ≤ C℘0,0
M (w − v) ≤ Cε . (6.4)

Finally let us consider {〈w−µ′−v−µ〉, h0}. By Remark 2.2 this is a symbol in S−µ, µ := min(µ, µ′).
By definition there exists a constant C1 = C1(w−µ′ , v−µ) > 0 such that

|{〈w−µ′ − v−µ〉, h0}(x, ξ)| ≤ C1(1 + x2 + ξ2)−µ, ∀(x, ξ) ∈ R2 .

In particular, at the point (x, ξ) in (6.2), we get that

|{〈w−µ′ − v−µ〉, h0}(x, ξ)| ≤
C1

(1 + 2R)µ . (6.5)

Thus, evaluating (6.1) at the point (x, ξ) and using (6.3), (6.4) and (6.5) we get

{〈w0〉, h0}(x, ξ) ≥ %− Cε−
C1

(1 + 2R)µ ≥
%

2 > 0
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provided one chooses ε < %

4C and R >
(
C1

2%

) 1
µ

, concluding the verification that w ∈ V .

Dense: Take v ∈ C0
r (T, S0

cl) and assume that v 6∈ V . Take ε > 0 arbitrary. We shall construct
w ∈ V with d0,0(v, w) < ε. Pick a function η ∈ C∞c (R2,R≥0), radial, and with η(x, ξ) = 1 for
x2 + ξ2 ≥ 1

2 and η(x, ξ) = 0 for x2 + ξ2 ≤ 1
4 . We put

w := v + ε0w0, w0(t, x, ξ) := cos(2t) η(x, ξ) xξ

x2 + ξ2

with ε0 > 0 small enough. Note that w0 is positively homogeneous of degree 0, so w ∈ C0
r (T, S0

cl).
Let us show that w ∈ V . Writing w = v0+ε0w0+v−µ, we have to check that {〈v0〉+ε0〈w0〉, h0} 6≡
0 in x2 + ξ2 ≥ 1. Since v 6∈ V , we have that {〈v0〉, h0} ≡ 0 in x2 + ξ2 ≥ 1 and we need only to
check that {〈w0〉, h0} 6≡ 0 on the same set. Computing explicitly 〈w0〉 (using also that η is radial
and thus constant along the flow φt), we obtain

〈w0〉 = η(x, ξ)
x2 + ξ2 ·

1
2π

∫ 2π

0
cos(2t)

(
x cos t+ ξ sin t

)(
− x sin t+ ξ cos t

)
dt = 1

2η(x, ξ) xξ

x2 + ξ2 .

Then, using that { η(x, ξ)
x2 + ξ2 , h0} = 0, we get

{〈w0〉, h0} = 1
2{xξ, h0}

η(x, ξ)
x2 + ξ2 = 1

2(x2 − ξ2) η(x, ξ)
x2 + ξ2

proving that w ∈ V . Finally we show that, provided ε0 > 0 is sufficiently small, d0,0(v, w) < ε.
So take N > 0 so large that

∑
j≥N+1 2−j < ε/2 and ε0 so small that

N∑
j=0

℘0,0
j (v − w) = ε0

N∑
j=0

℘0,0
j (w0) < ε

2 .

Then d0,0(v, w) ≤
∑N
j=0 ℘

0,0
j (v − w) +

∑
j≥N+1

1
2j < ε.

We conclude this part with the following lemma, which somehow generalize the construction
of the symbol w in the previous proof.

Lemma 6.1. Let v ∈ S0
cl be real valued and so that {h0, v} 6≡ 0 in x2 + ξ2 ≥ 1. Then there exists

n ∈ N such that
v(t, x, ξ) := cos(nt) v(x, ξ) ∈ V .

In particular OpW (v(t, ·)) is a transporter for (1.1).

Proof. We need to check that {h0, 〈v〉} 6≡ 0 in x2+ξ2 ≥ 1, where 〈v〉(x, ξ) = 1
2π
∫ 2π

0 cos(nt) v(φt(x, ξ)) dt.
The function t 7→ v(φt(x, ξ)) is 2π-periodic in time; expanding it in Fourier series one gets

v(φt(x, ξ)) = v+
0 (x, ξ) + 2

∑
n≥1

(
cos(nt) v+

n (x, ξ) + sin(nt) v−n (x, ξ)
)

(6.6)

where

v+
n (x, ξ) := 1

2π

2π∫
0

cos(nt) v(φt(x, ξ)) dt, v−n (x, ξ) := 1
2π

2π∫
0

sin(nt) v(φt(x, ξ)) dt, n ≥ 0.
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They are all symbols positively homogeneous of degree 0. The claim is equivalent to verify that

∃ n ≥ 1: {h0, v+
n } 6≡ 0 in x2 + ξ2 ≥ 1 . (6.7)

First note that, by integration by parts and the periodicity of the flow φt,

{h0, v+
n } = 1

2π

2π∫
0

cos(nt) {h0, v ◦ φt} dt = 1
2π

2π∫
0

cos(nt)
(

d
dtv ◦ φ

t

)
dt

= n

2π

2π∫
0

sin(nt) (v ◦ φt) dt = n v−n ,

so it is sufficient to check that ∃n ≥ 1 so that v−n 6≡ 0 in x2 + ξ2 ≥ 1. Actually, since

v−n (x, ξ) = 1
2π

∫ 2π

0
sin(nt) v

(
φt(x, ξ)

)
dt = 1

2π

∫ 2π

0
cos
(
n(t− π

2n )
)

v
(
φt(x, ξ)

)
dt

= 1
2π

∫ 2π

0
cos(nt) v

(
φt+

π
2n (x, ξ)

)
dt = v+

n

(
φ
π

2n (x, ξ)
)
,

it is enough to check that ∃n ≥ 1 so that one among v±n is not identically zero in x2 + ξ2 ≥ 1;
this is what we show next.

Assume by contradiction that v±n ≡ 0 in x2 + ξ2 ≥ 1 for any n ≥ 1; then from (6.6) we get
v ◦ φt = v+

0 for any t ∈ R and any x2 + ξ2 ≥ 1. Then

0 = d
dtv ◦ φ

t = {h0, v} ◦ φt , ∀t ∈ R, ∀x2 + ξ2 ≥ 1;

so, at t = 0, one gets {h0, v} ≡ 0 in x2 + ξ2 ≥ 1, contradicting the assumption.
Then at least one couple of the v±n is not identically zero, and (6.7) follows.

A Technical results
A.1 The strong G̊arding inequality in S0

Our proof involves the Anti-Wick quantization of a symbol, which we now introduce. First let
us define coherent states: for z = (q, p) ∈ R2 let

Φ0(x) := 1
π1/4 e

− x2
2 , Φz := TzΦ0, [Tzu](x) := e−

i
2pq eixp u(x− q) . (A.1)

Note that the operator Tz is unitary in L2(R). Now, given a symbol a ∈ S0, we define its
Anti-Wick quantization by

(Opaw(a)u) (x) :=
∫
R2
a(q, p) 〈u,Φq,p〉Φq,p dq dp . (A.2)

We collect few properties of the Anti-Wick quantization:

Lemma A.1. Let a ∈ S0. Then

(i) If a ≥ 0, then 〈Opaw(a)u, u〉 ≥ 0 for any u ∈ L2.
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(ii) One has Opaw(a) = OpW (a ∗ Φ0), with Φ0 in (A.1). Moreover a− a ∗ Φ0 ∈ Sm−2.

Proof. Item (i) follows directly from the definition (A.2). Item (ii) is Theorem 24.1 of [39].

Proof of Theorem 2.6. Let χ ∈ C∞c (R2,R≥0), radial cut-off function with

χ(x, ξ) = 1 ∀x2 + ξ2 ≤ R, χ(x, ξ) = 0 ∀x2 + ξ2 ≥ R+ 1 .

Then the function aχ := a(1− χ) ∈ S0 fulfills, using the assumption (2.4),

aχ(x, ξ) ≥ 0 ∀x, ξ ∈ R . (A.3)

Next we write

OpW (aχ) = OpW (aχ ∗ Φ0) + OpW (aχ − aχ ∗ Φ0)
= Opaw(aχ) + OpW (aχ − aχ ∗ Φ0)

where to pass from the first to the second line we used Lemma A.1 (ii). By Lemma A.1 and
(A.3) one has Opaw(aχ) ≥ 0, hence

〈OpW (aχ)u, u〉 ≥ 〈OpW (aχ − aχ ∗ Φ0)u, u〉 .

Now use that aχ = a− aχ to deduce

〈OpW (a)u, u〉 ≥ 〈OpW (aχ − aχ ∗ Φ0)u, u〉+ 〈OpW (aχ)u, u〉.

By Lemma A.1 (ii) the symbol aχ− aχ ∗Φ0 ∈ S−2 and moreover aχ ∈ S−∞. Then Theorem 2.1
(i) implies the claimed bound (2.5).

A.2 Proof of Theorem 2.7
Denote by A the set on the right of (2.6). We first show that σess(OpW (v)) ⊆ A . Assume by
contradiction that λ ∈ σess(OpW (v)) does not belong to A . Then there exist c,R > 0 such that
|v(x, ξ)− λ| ≥ c for any x2 + ξ2 ≥ R. Let χ ∈ C∞c (R2) with χ ≡ 1 in x2 + ξ2 ≤ R and χ ≡ 0 in

x2 + ξ2 ≥ R+ 1. Put b(x, ξ) = 1− χ(x, ξ)
v(x, ξ)− λ ∈ S

0. Then by symbolic calculus there are operators

K1,K2 ∈ S−1 (and therefore compact) so that(
OpW (v)− λ

)
OpW (b) = Id +K1, OpW (b)

(
OpW (v)− λ

)
= Id +K2 .

Thus OpW (v) − λ is a Fredholm operator, and its spectrum in a neighbourhood of zero must
be discrete. In particular λ 6∈ σess(OpW (v)), contradicting the assumption. This shows that
σess(OpW (v)) ⊆ A .

We show now the inverse inclusion A ⊆ σess(OpW (v)). Given λ ∈ A , we shall exhibit
a Weyl’s sequence for λ, i.e. a sequence of functions {ϕj}j≥1 ∈ L2 with ‖ϕj‖ = 1, ϕj ⇀ 0
and ‖(OpW (v) − λ)ϕj‖ → 0; then Weyl’s theorem guarantees that λ ∈ σess(OpW (v)). We
construct such a Weyl’s sequence using the coherent states in (A.1). If λ ∈ A we have a
sequence zj := (qj , pj)→∞ with v(qj , pj)→ λ. Put (see (A.1))

Φj := Φzj = TzjΦ0 .

We claim that, up to subsequences, {Φj}j≥1 is a Weyl sequence for λ. It is clear that ‖Φj‖ = 1
∀j. It is not difficult to show that Φj ⇀ 0; for completeness we prove this in Lemma A.2 below.
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We show now that ‖(OpW (v)−λ)Φj‖ → 0. First we have, using the reality of λ, v and symbolic
calculus,

OpW (v − λ)∗OpW (v − λ) = OpW
(
(v − λ)2 + r−1

)
, r−1 ∈ S−1 .

So we write

‖(OpW (v)− λ)Φj‖2 = 〈OpW
(
(v − λ)2)Φj ,Φj〉+ 〈OpW (r−1) Φj ,Φj〉 .

Since OpW (r−1) ∈ S−1 is compact and Φj ⇀ 0, it follows that 〈OpW (r−1) Φj ,Φj〉 → 0 and
therefore it suffices to show that 〈OpW

(
(v − λ)2)Φj ,Φj〉

j→∞→ 0. To estimate this last term we
shall use the following identities:

T −1
z OpW (a) Tz = OpW (a(·+ z)) , (A.4)

〈OpW (a) Φ0,Φ0〉 = 1
π

∫
R2
a(x, ξ) e−(x2+ξ2) dx dξ. (A.5)

They are both contained in the book [11]: the first one is formula (2.16), whereas the second one
follows combining Proposition 14 and 16 (with ~ = 1) in chap. 2.
We deduce, using T ∗zj = T −1

zj ,

〈OpW
(
(v − λ)2)Φj ,Φj〉 = 〈T −1

zj OpW
(
(v − λ)2) TzjΦ0,Φ0〉

(A.4)= 〈OpW
(

(v(·+ zj)− λ)2
)

Φ0,Φ0〉

(A.5)= π−1
∫
R2

(
v(x+ qj , ξ + pj)− λ

)2
e−(x2+ξ2) dx dξ

The last integral converges to 0 as j →∞ by Lebesgue’s dominated convergence theorem, since
v ∈ S0 is bounded and fulfills v(x+ qj , ξ + pj)

j→∞→ λ pointwise when (qj , pj)→∞.

Lemma A.2. Let zj := (qj , pj)→∞. Then, up to a subsequence, Φj := TzjΦ0 ⇀ 0.

Proof. We distinguish two cases: (i) the sequence {qj}j is bounded and (ii) up to a subsequence
|qj | → ∞.
In case (i), up to a subsequence we can assume qj → q0 ∈ R and pj → ∞. Take an arbitrary
f ∈ L2(R). We write∫

R
f(x) Φj(x) dx =

∫
R
f(x) Φ(q0,pj)(x)dx︸ ︷︷ ︸

=:I1

+
∫
R
f(x)

(
Φ(qj ,pj)(x)− Φ(q0,pj)(x)

)
dx︸ ︷︷ ︸

=:I2

. (A.6)

Using Riemann-Lebesgue lemma

I1 = e
i
2pjq0

π
1
4

∫
R
f(x) e−

(x−q0)2
2 e−ixpjdx pj→∞→ 0 .

To estimate the second integral in (A.6) we write

I2 = π−
1
4

∫
R
e−

x2
2 e−ixpj

(
f(x+ qj)e−

i
2pjqj − f(x+ q0)e− i

2pjq0
)

dx

= e−
i
2pjqj

π
1
4

∫
R
e−

x2
2 e−ixpj

(
f(x+ qj)− f(x+ q0)

)
dx︸ ︷︷ ︸

I21

+ e−
i
2pjqj − e− i

2pjq0

π
1
4

∫
R
e−

x2
2 e−ixpj f(x+ q0) dx︸ ︷︷ ︸

I22
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Next we have that
|I21| ≤ C‖f(·+ qj)− f(·+ q0)‖L2(R)

qj→q0→ 0

by the continuity of the translations in L2(R), whereas

|I22| ≤ C
∣∣∣∣∫

R
e−

x2
2 e−ixpj f(x+ q0) dx

∣∣∣∣ pj→∞→ 0

by Riemann-Lebesgue lemma. In conclusion we have proved that
∫
R f(x) Φj(x) dx→ 0 as j →∞.

This concludes the proof of case (i).
In case (ii) we can assume that, up to a subsequence, qj has always the same sign. Let

f ∈ L2(R). Then one easily shows that∣∣∣∣∫
R
f(x) Φj(x)dx

∣∣∣∣ ≤ π−1/4
∫
R
|f(x+ qj)| e−

x2
2 dx |qj |→∞→ 0

concluding the proof of case (ii).
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