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Abstract

We perform a detailed study of a class of irregular correlators in Liouville Conformal Field
Theory, of the related Virasoro conformal blocks with irregular singularities and of their con-
nection formulae. Upon considering their semi-classical limit, we provide explicit expressions of
the connection matrices for the Heun function and a class of its confluences. Their calculation
is reduced to concrete combinatorial formulae from conformal block expansions. Since Heun
functions solve wave equations on various black holes backgrounds, we exploit our result to
give exact expressions for different observables in black hole physics such as greybody factors,
quasinormal modes and Love numbers. In the context of anti de Sitter black holes, we use
our connection formulas in order to give novel exact expressions for thermal correlators of the
boundary theory.
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Chapter 1

Introduction

Laws of physics are often formulated in terms of differential equations. This is the case for most
of classical mechanics, quantum mechanics and general relativity. As a result, the development
of efficient methodologies for obtaining analytical solutions to these equations becomes a matter
of utmost importance. This thesis is dedicated to this very pursuit.

We will be concerned with a very special class of differential equations: second order Fuch-
sian differential equations. They are homogeneous linear 2nd order ordinary differential equa-
tions (ODE) with rational coefficients defined on the Riemann sphere. Being second order
ODEs, they can always be recasted in normal form, namely(

∂2
z + V (z)

)
ψ(z) = 0 . (1.0.1)

Fuchsian ODEs are classified by their singularities. In the form of (1.0.1), this means that they
are classified by the singularities of V (z). The usual definition of Fuchsian ODEs requires that
all the singularities of V (z) should be regular, i.e. quadratic, but we will also consider confluent
limits where regular singularities collide to produce higher order (irregular) ones.

Since we can always fix up to 3 points on a sphere, we expect that the equation (1.0.1) will
be qualitatively simpler if it has at most 3 regular singularities. The simplest possible case is
when we have just 2 singularities, which we can fix to be at 0,∞ without loss of generality. A
convenient parametrization of the potential is V (z) =

1
4
−a2

z2 . This case is indeed very simple
and for a 6= 0 the solution reads1

ψ(z) = c1z
1
2
−a + c2z

1
2

+a . (1.0.2)

The next case is when we have 3 regular singularities, that we can without loss of generality
fix to be at 0, 1,∞. The solution is given in terms of the hypergeometric functions, which are
amongst the most studied special functions in mathematics. Firstly introduced by Gauss [1] 2,
they are defined as

2F1(a, b, c, z) =
∑
n≥0

(a)n(b)n
(c)n

zn

n!
, (1.0.3)

where (x)n = Γ(x+n)
Γ(x)

is the rising Pochhammer symbol. The function (1.0.3) is the Frobenius
series of the solution of the ODE close to the singularity at z = 0. It converges until it reaches
the next singularity at z = 1. Even though 2F1 is a series with a finite radius of convergence,
it admits an integral representation which is globally well defined that allow us to analytically
continue it everywhere on the Riemann sphere.

When we add a 4th singularity the situation gets qualitatively more complicated. In fact
we cannot fix the position of the 4th singularity, and we are left with new modulus. The

1For a = 0 logarithms appear in the solution.
2See [2] for a passionated review on hypergeometric functions.
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power series defining the solutions of the ODE is not known in closed form, and no integral
representation comes to help. The mysterious function that solves a 2nd order Fuchsian ODE
with 4 regular singularities is dubbed the Heun function.

Heun functions3 [3, 4, 5, 6] are much less understood than their simpler relative 2F1, and
not due to a lack of interest: they are ubiquitous in mathematical and theoretical physics [7,
8, 9, 10, 11]. An example that will be relevant for this thesis is the one of general relativity.
Perturbations of a black hole background and the consequent emission of gravitational waves
are often controlled by Heun functions and their confluences. They efficiently describe the
ringdown of black hole mergers, and the quasinormal modes which characterize this phase can
be determined exactly by solving a spectral problem where the Heun equation appears as a
Schrödinger equation. Similarly scattering off a black hole is controlled by Heun functions and
their analytic continuation. Needless to say, the recent experimental verification of gravita-
tional waves [12] renewed the interest in these theoretical problems, and made of the study of
analytical solutions of the corresponding ODEs of paramount importance both to deepen our
comprehension of physical phenomena and to reveal possible physical fine structure effects.

A less phenomenological context where Heun functions appear is the one of holographic
correlators. As we will briefly review later, holography represents a correspondence between
a semiclassical gravity theory and a strongly coupled conformal field theory (CFT). In partic-
ular, semiclassical gravity in asymptotically anti de Sitter (AdS) spacetimes is believed to be
equivalent to a strongly coupled CFT living on the boundary of AdS. This correspondence is
often dubbed AdS/CFT, and was firstly introduced in [13]. When a sufficiently large black
hole lives in the gravitational theory, the boundary theory will be in thermal equilibrium with
the Hawking radiation emitted by the black hole. In particular, black hole perturbations in
asymptotically AdS spacetimes govern the dynamics of the dual thermal CFT at strong cou-
pling: above the Hawking-Page transition [14] the two point function of the boundary theory is
computed by studying the wave equation on the AdS-Schwarzschild background [15], which is
solved by Heun functions. Thermal correlation functions contain a wealth of fascinating physics
related to the richness of the black hole geometry. For example, two-point functions encode the
transport properties of the system, see e.g. [16, 17], the approach to equilibrium [18], as well
as chaotic dynamics via pole-skipping [19, 20]. Moreover their analytic structure is determined
in terms of the quasinormal modes of the bulk black hole [21]. Thermal correlators have also
been used to formulate a version of the information paradox [22], as well as to look for subtle
signatures of the black hole singularity [23, 24, 25, 26].

Fuchsian equations and their confluences appear also when studying perturbations of differ-
ent geometric backgrounds. An example is the one of fuzzball geometries, which are atypical
black holes microstates that admit a supergravity description [27, 28, 29] (for a review see [30]).
In this context having analytic control on the solutions of wave equations is crucial in order to
capture the features that distinguish black holes from their microstates. While in some simple
models perturbations are solved in terms of hypergeometric functions [31], in more realistic
models Heun equations make their appearance.

In the scenarios discussed above the relevant physical problem can be outlined as follows.
When solving the wave equation satisfied by perturbations of the background of interest, one
has to impose boundary conditions. For black holes, the relevant boundary condition is that
the perturbation should look like an ingoing wave close to the horizon, which appears as a
singularity of the Fuchsian ODE. Since closed form solutions are not available, in order to
select the ingoing solution one considers a Frobenius expansion of the solution of the ODE

3For a huge bibliography take a look at https://theheunproject.org .
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close to the horizon and selects the series that looks like an ingoing wave:

ψin(r) = (r − r+)cin
∑
k≥0

ck(r − r+)k . (1.0.4)

Physical observables are read off at radial infinity, which appears as another singularity of the
ODE. The point r = ∞ is typically outside the radius of convergence of the ingoing solution,
and a nontrivial analytic continuation is needed. One has

ψin(r) = Aψ(1)
∞ (r) + Bψ(2)

∞ (r) , (1.0.5)

where ψ(1,2)
∞ (r) are the two linearly independent series convergent close to r = ∞. The coef-

ficients A and B select the linear combination that continues the ingoing solution at infinity.
They are the so called connection coefficients of the ODE. The relevant mathematical problem
is the analytic continuation of the series centered at one singularity up to another singularity.
This is called the connection problem in the mathematical literature.

Due to the lack of closed form results regarding Heun functions, the corresponding connec-
tion problems are usually studied in the WKB approximation. This method was firstly proposed
in [32], and then developed in [33, 34, 35] (see [36] for a review). WKB approximation has been
then successfully applied in the context of perturbations of geometric backgrounds (see for ex-
ample [37, 38, 39]). This is a powerful and rather general method that applies even beyond
the Heun function. However WKB approximation works in narrow corners of parameter space,
and computes the connection coefficients as asymptotic series.

In the context of pure mathematics, Heun functions solve the classical Poincaré uniformi-
sation problem of a Riemann sphere with four punctures [40, 41]. Moreover Heun equations
arise from the linear system whose isomonodromic deformation problems reduce to the classical
Painlevé VI equations. This was firstly noted by Fuchs [42, 43] and Garnier [44]. A modern
approach to this problem is discussed in [45, 46, 47] and [48].

Crucially for this thesis, there is another context where Fuchsian equations, and in particular
Heun equations, make their appearance. In fact recent developments in the study of two-
dimensional conformal field theories, their relation with supersymmetric gauge theories and
equivariant localization in quantum field theory produced new tools which are very effective to
study classical problems in the theory of Fuchsian ODEs. It has been known for some time now
that the study of two dimensional Conformal Field Theories [49] and of the representations of its
infinite-dimensional symmetry algebra provide exact solutions to partial differential equations
in terms of conformal blocks and the appropriate fusion coefficients. The prototypical example
is the null-state equation at level 2 for primary operators of Virasoro algebra which reduce, in
the large central charge limit, to a Schrödinger-like equation with regular singularities of the
form (1.0.1) at the position of the insertion of the operators. In this way one can engineer
solutions of second-order linear differential equations of Fuchsian type by making use of the
appropriate two dimensional CFT.

While under the operator/state correspondence the vertex operators in the above construc-
tion correspond to primary (highest weight) states, one can insert more general irregular vertex
operators corresponding to irregular states. The latter generate irregular singularities in the cor-
responding null-state equation and therefore allow engineering more general potentials with sin-
gularities of order higher than two. Schematically, given a multi-vertex operator OV (z1, . . . , zN)
satisfying the OPE

T (z)OV (z1, . . . , zN) ∼ V (z; zi, ∂zi)OV (z1, . . . , zN) as z ∼ zi (1.0.6)

one finds the corresponding level 2 null-state equation (BPZ equation, from the authors of [49])

[b−2∂2
z + V (z; zi, ∂zi)]Ψ(z) = 0 Ψ(z) = 〈Φ2,1(z)OV (z1, . . . , zN)〉 , (1.0.7)
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satisfied by the correlation function of the multi-vertex and the level 2 degenerate field Φ2,1(z).
In the previous equation, b parametrizes the central charge of the CFT and the scaling dimension
of the degenerate field as

c = 1 + 6(b2 + b−2 + 2) , ∆2,1 = −1

2
− 3

4
b2 . (1.0.8)

If the multi-vertex contains primary operators only, the OPE (1.0.6) and the potential in (1.0.7)
contains at most quadratic poles, while the insertions of irregular vertices generate higher order
singularities in V (z; zi, ∂zi). V (z; zi, ∂zi) is a function of z and of differential operators with
respect to the zi. The dependence on the latter trivializes in the semiclassical limit c → ∞,
and one finds a Schrödinger-like equation of the form (1.0.1). This ODE is a representation
theoretical object, and will be the same for any CFT whose spectrum (or its analytic continu-
ation) contains null-states. For various reasons that will be clear in the following, throughout
the thesis we will specify to Liouville CFT. The mathematical interest of Liouville quantum
field theory has been already highlighted by A.M. Polyakov who proposed to interpret it as a
quantum extension of the Poincaré uniformisation problem [50]. A consequence of the above
interpretation is that one can make use of the classical limit of Liouville theory to obtain new
exact solutions of classical uniformisation [51]. This inspired the work of several authors [52,
53, 54, 55] and received a renewed interest after the discovery of AGT correspondence [56, 57,
58, 59, 60, 61, 62]. Perhaps more relevant to this thesis, Liouville CFT has already been used to
solve differential equations in the context of Painlevé transcendents [63]. This correspondence
between Painlevé and Liouville CFT has been extended to the full Painlevé confluence diagram
in [64] and more general contexts in [65, 66, 67, 68]. All these results are related to the c = 1
limit of Liouville CFT.

All in all, the solution of (1.0.1) can be derived from the explicit computation of a large c
CFT correlator and from its expansions in different intermediate channels. The main advantage
over, for example, WKB computations, is that the solutions obtained with this method will
inherit the convergence properties of conformal blocks, and be in this sense exact. An important
ingredient to accomplish this program is a deep control on the analytic structure of Virasoro
conformal blocks. This has been obtained after the seminal AGT paper [69]. As we will briefly
review later, according to the AGT correspondence in fact conformal blocks of Virasoro algebra
are identified with concrete combinatorial formulae arising from equivariant instanton counting
in the context of N = 2 four-dimensional supersymmetric gauge theories [70, 71]. The explicit
solution of the instanton counting problem has been decoded in the CFT language in terms of
overlap of regular and irregular states in [72, 73, 74, 75].

This program, which started with [76], was firstly applied to black hole physics in [77], and
has been used to compute the connection coefficients of Heun functions [78]. They have been
verified in a more rigorous context in [79], and applied to a variety of black holes backgrounds
[80, 81, 82] and fuzzball geometries [83, 84, 85, 86, 87, 88] 4.

The general round of ideas underlying this thesis is the following: we start from a Fuch-
sian differential equation that appears in the context of black hole (or some other geometrical
background) perturbations and/or holography; then we engineer in Liouville CFT a correlation
functions that satisfies in the semiclassical limit the same ODE; finally, we read off the exact
solution of the connection problem of the ODE exploiting our knowledge of Liouville CFT, and
use the AGT duality to express the result in terms of concrete and convergent combinatorial
series. The interplay between the various characters of this game is summarized in figure (1.1).

For concrete purposes it is convenient to solve the connection problems of the Fuchsian
ODEs of interest once for all, and then make use of the results when needed. With this in
mind, this thesis is structured as follows:

4For a similar approach based on integrability see [89, 90, 91]
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Liouville CFT N = 2 4d SW theories

BH perturbations Holographic correlators

AGT

AdS/CFT

BPZ

Figure 1.1: Flow diagram of this thesis.

• In Chapter 2 we will briefly introduce the main characters of the game, that is Liouville
CFT, wave equations in black holes backgrounds and their holographic counterpart.

• Chapter 3 contains the main core of the thesis: here we will exploit our knowledge of
Liouville theory to construct new exact solutions of a large class of differential equations.
For concreteness, we will focus on Heun equations.

• In Chapter 4 we apply the results from chapter 3 to perturbations of asymptotically flat
black holes.

• In Chapter 5 we apply the results from chapter 3 to perturbations of asymptotically
AdS black holes and holographic correlators at finite temperature.

• In Chapter 6 we draw our conclusions and list some open problems.
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Chapter 2

Background

In this chapter we briefly introduce the main characters of the thesis: Liouville CFT, wave
equations in black hole backgrounds and holographic correlators at finite temperature. Rather
than a comprehensive review, this chapter is intended as a list of preliminary facts that sets
the stage (and the notation) for the rest of the thesis.

There is a fourth class of objects that will be mentioned throughout the thesis: N = 2
supersymmetric 4d gauge theories. Partition functions of such theories are related to Liouville
CFT by the celebrated AGT duality, and they can be efficiently computed via localizations
techniques as convergent combinatorial series. Thanks to the AGT duality such series turn into
explicit expressions for 2d conformal blocks. For our purposes these gauge theories serve only
as a technical tool to compute Liouville conformal blocks, therefore we will not introduce them
in detail.

2.1 Liouville CFT
Let us start by recalling some general facts about 2d CFT (for a comprehensive review see
e.g. [92]). A 2d CFT is a 2d quantum field theory which is covariant under two copies of the
Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n , m, n ∈ Z , (2.1.1)

and its antiholomorphic counterpart

[L̄m, L̄n] = (m− n)L̄m+n +
c

12
(m3 −m)δm+n , m, n ∈ Z , (2.1.2)

with [L̄n, Lm] = 0. A special class of operators in the theory are the so called primary operators
V∆,J : they transform as tensors under conformal transformations, meaning that when z → w(z)
one has

V∆,J(z)dz∆ → V∆,J(w)dw∆ . (2.1.3)

Their commutation relations with the Ln’s are

[Ln, V∆,J(z)] =
(
zn+1∂z + ∆(n+ 1)zn

)
V∆,J(z) ,

[L̄n, V∆,J(z)] =
(
zn+1∂z + ∆̄(n+ 1)zn

)
V∆,J(z) .

(2.1.4)

These operators are labeled by their (anti)holomorphic scaling dimension (∆̄)∆ and their spin
J = ∆ − ∆̄. Another important operator of the theory is the (anti)holomorphic energy mo-
mentum tensor (T̄ (z̄)) T (z). Its mode expansion reads

T (z) =
∑
n

Lnz
−n−2 , T̄ (z̄) =

∑
n

L̄nz̄
−n−2 . (2.1.5)
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Since
L−k =

1

2πi

∮
dz
T (z)

zk−1
, (2.1.6)

where the contour is a small circle centered at z = 0, we can define Virasoro generators acting
at a generic spacetime point w as

L−k(w) =
1

2πi

∮
dz

T (z)

(z − w)k−1
, (2.1.7)

where now the contour is a circle centered at z = w. We have Ln = Ln(0).
Primary states are created by primaries acting on the conformal vacuum |0〉 s.t. L±1, L0|0〉 =

0:
V∆,J(0)|0〉 = |∆, J〉 . (2.1.8)

Such states diagonalize the L0 action since L0|∆, J〉 = ∆|∆, J〉, and are annihilated by all
Virasoro descendants Ln with n > 0 (annihilation operators). They define a lowest weight
representation of the Virasoro algebra. The other states in the same representation, the so
called conformal descendants of |∆, J〉, are obtained acting with negative Virasoro generators.
They are organized according to their L0 weight:

L0 = ∆ + 1 : L−1|∆, J〉 ,
L0 = ∆ + 2 : L−2|∆, J〉 , L2

−1|∆, J〉 ,
L0 = ∆ + 3 : L−3|∆, J〉 , L−2L−1|∆, J〉 , L3

−1|∆, J〉 ,
. . .

(2.1.9)

L0 is the generator of dilatations, and since 2d CFT are typically radially quantized, it morally
plays the role of the Hamiltonian of the theory. Unitarity then requires ∆, ∆̄ ≥ 0. A convenient
parametrization is

∆ = ∆α =
c− 1

24
− α2 , α ∈ iR . (2.1.10)

α is the so called (holomorphic) momentum of the field V∆,J . The set of all primaries of a given
theory, together with their descendants, forms a complete basis of the Hilbert space, and one
has

Id =
∑
∆,J

∑
Y,Y ′

∑
Ỹ ,Ỹ ′

L−Y L̄−Ỹ |∆, J〉Q
−1
∆ (Y, Y ′)Q−1

∆−J(Ỹ , Ỹ ′)〈∆, J |LY ′L̄Ỹ ′ , (2.1.11)

where Y is a Young diagram Y = (n1, n2, n3, . . . , nmax), with n1 ≥ n2 · · · ≥ nmax, LY =
Ln1Ln2 . . . Lnmax and accordingly L−Y ′ = L−n′1L−n′2 . . . L−n′max . Moreover, the bra 〈∆, J | is
given by

〈∆, J | = lim
z→∞

z2∆z̄2∆〈0|V∆,J(z) (2.1.12)

and Q∆(Y, Y ′) is the so called Shapovalov form, that is the matrix with entries

Q∆(Y, Y ′) = 〈∆, J |LYL−Y ′ |∆, J〉 . (2.1.13)

Note that Q∆ is block diagonal since, as it can easily be proven form the commutations relations
(2.1.2), if Y, Y ′ have different number of boxes Q∆(Y, Y ′) = 0.

Conformal symmetry poses great constraints on correlation functions. In particular, since
one can always fix (up to) 3 points on a sphere to be at 0, 1 and ∞ up to conformal transfor-
mations, spacetime dependence in 2 and 3 point functions is trivial. Moreover since

〈∆1, J1|L0|∆2, J2〉 = ∆1〈∆1, J1|∆2, J2〉 = ∆2〈∆1, J1|∆2, J2〉 , (2.1.14)
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and similarly for the antiholomorphic part, the two point function vanishes unless ∆1 = ∆2

and J1 = J2. All in all one has

〈∆1, J1|∆2, J2〉 = G∆1δ∆1∆2 ,

〈∆1, J2|V∆2,J2(1)|∆3, J3〉 = C123 .
(2.1.15)

C∆ and C123 are the so called structure constants of the CFT. They are theory dependent
constants that are not determined by conformal symmetry. Higher point function are more
complicated. Inserting the identity (2.1.11) in a 4 point function one gets

〈∆∞, J∞|V∆1,J1(1)V∆z ,Jz(z)|∆0, J0〉 =

=
∑

∆

∣∣∣∣∑
Y,Y ′

Q−1
∆ (Y, Y ′)〈∆∞, J∞|V∆1,J1(1)L−Y |∆, J〉〈∆, J |LY ′V∆z ,Jz(z)|∆0, J0〉

∣∣∣∣2 (2.1.16)

where the modulus squared sends ∆→ ∆− J = ∆̄. One has for example, again from (2.1.2)

〈∆1, J1|LnV∆2,J2(t)|∆3, J3〉 = 〈∆1, J1|[Ln, V∆2,J2(t)]|∆3, J3〉 =

= C123t
∆3−∆2−∆1tn(∆3 + n∆2 −∆1) ,

(2.1.17)

and
Q∆(1, 1) = 2∆ , Q∆(2, 2) = 4∆ +

c

2
, Q∆(2, (1, 1)) = . . . (2.1.18)

Every n-th descendant contributes with a power zn to (2.1.16). One has

〈∆∞, J∞|V∆1,J1(1)V∆z ,Jz(z)|∆0, J0〉 =

=
∑

∆

C∞1∆C∆z0G∆

∣∣∣∣z∆−∆z−∆0

(
1 +

(∆ + ∆1 −∆∞)(∆ + ∆z −∆0)

2∆
z +O(z2)

) ∣∣∣∣2 . (2.1.19)

The z series inside the modulus squared is a so called conformal block, that we will denote as

F

(
∆1

∆∞
∆

∆z

∆0
; z

)
= z∆−∆z−∆0

(
1 +

(∆ + ∆1 −∆∞)(∆ + ∆z −∆0)

2∆
z +O(z2)

)
. (2.1.20)

It is given as a power series in z whose coefficients are determined by conformal invariance. It
is believed to be a convergent series whose radius of convergence arrives at the position of the
next insertion (in this case z = 1). In terms of conformal blocks we can rewrite

〈∆∞, J∞|V∆1,J1(1)V∆z ,Jz(z)|∆0, J0〉 =
∑

∆

C∞1∆C∆z0G∆

∣∣∣∣F(∆1

∆∞
∆

∆z

∆0
; z

) ∣∣∣∣2 . (2.1.21)

If we want to expand our series close to the insertion at 1 we simply send z → w = 1− z. From
(2.1.3), and decomposing again in conformal blocks, we find

〈∆∞, J∞|V∆1,J1(1)V∆z ,Jz(z)|∆0, J0〉 =
∑

∆

C∞0∆C∆z1G∆

∣∣∣∣F(∆0

∆∞
∆

∆z

∆1
; 1− z

) ∣∣∣∣2 . (2.1.22)

In a common domain of convergence the two expressions must agree:

∑
∆

C∞1∆C∆z0G∆

∣∣∣∣F(∆1

∆∞
∆

∆z

∆0
; z

) ∣∣∣∣2 =
∑

∆

C∞0∆C∆z1G∆

∣∣∣∣F(∆0

∆∞
∆

∆z

∆1
; 1− z

) ∣∣∣∣2 . (2.1.23)
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This statement is the so called crossing symmetry of the correlator. The constraint (2.1.23)
poses severe and nontrivial constraints on both the spectrum of the CFT and its structure
constants.

Instead of inserting the identity in correlators, it is useful to restate what we just said using
a different tool: the operator product expansion (OPE). This is a formal Taylor expansion at
the operatorial level. When the insertion points of two operators are close to each other one
can expand in the separation as follows:

V∆1,J1(z)V∆2,J2(0) = (zz̄)∆−∆1−∆2

∑
∆

C∆
∆1∆2

∑
Y,Y ′

z|Y |z̄|Y
′|cY cY ′L−Y L̄−Y ′V∆,J(0) , (2.1.24)

where |Y | is the total size of the Young diagram and the sum over ∆ runs over all the spectrum
of the theory. The coefficients cY are again completely fixed by Virasoro symmetry, while the
constant (OPE coefficient) C∆

∆1∆2
and the spectrum are not. Inserting (2.1.24) in a 4 point

function and noting that
C∆

∆1∆2
= C∆1∆2∆G∆ (2.1.25)

one finds again (2.1.21).
We now specify our discussion to Liouville CFT. As we mentioned, the only theory depen-

dent objects in a 2d CFT are the spectrum and the structure constant. Liouville CFT is the
unique [93, 94] 2d CFT with continuous and diagonal (∆ = ∆̄, or equivalently J = 0) spectrum
whose structure constants depend meromorphically on the Liouville momentums α. Central
charge and scaling dimensions are usually parametrized as

c = 1 + 6Q2 , Q = b+
1

b
, ∆ = ∆̄ = ∆α =

Q2

4
− α2 , b ≥ 0 , α ∈ iR . (2.1.26)

With the previous assumptions one can explicitly compute the structure constants [95, 96] and
finds

Cα1α2α3 =
Υ′b(0)Υb (Q+ 2α1) Υb (Q+ 2α2) Υb (Q+ 2α3)

Υb

(
Q
2

+ α1 + α2 + α3

)
Υb

(
Q
2

+ α1 + α2 − α3

)×
× 1

Υb

(
Q
2

+ α1 − α2 + α3

)
Υb

(
Q
2
− α1 + α2 + α3

) ,
Gα =

Υb (Q+ 2α)

Υb (2α)
,

(2.1.27)

where Υb(x) is a special function characterized1 by the functional relation

Υb(x+ b) = γ(bx)b1−2bxΥb(x) , γ(x) =
Γ(x)

Γ(1− x)
. (2.1.28)

A special role in conformal field theory theory is played by the so called degenerate fields. The
spectrum of Liouville theory can be analytically continued to contain zero norm states. Let us
discuss the first nontrivial example. Consider the primary operator

Φ2,1(z) , ∆2,1 = −1

2
− 3

4
b2 , α2,1 = −2b+ b−1

2
. (2.1.29)

This operator acting on the vacuum generates the primary state Φ2,1(0)|0〉 = |∆2,1〉. Consider
the descendant

|χ〉 =
(
b−2L2

−1 + L−2

)
|∆2,1〉 . (2.1.30)

1See [97] for a complete characterization of Υb.
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It can be easily proven that 〈χ|χ〉 = 0. This state has zero norm! Moreover we have

L0|χ〉 = (∆2,1 + 2)|χ〉 , Ln>0|χ〉 = 0 . (2.1.31)

This zero norm descendant is a primary state itself, and in particular is orthogonal to every
state in the Hilbert space. This means that all correlation functions involving |χ〉 have to vanish
identically:

〈V1(z1)V2(z2) . . . χ(z) . . . Vn(zn)〉 = 〈V1(z1)V2(z2) . . .
(
b−2L2

−1 + L−2

)
· Φ2,1(z) . . . Vn(zn)〉 = 0 ,

(2.1.32)
where we denoted L−n(z) · Φ2,1(z) = L−n(z)Φ2,1(z). Since Virasoro generators act as dif-
ferential operators on primaries, (2.1.32) turns into a differential equation for the correlator
〈V1(z1)V2(z2) . . .Φ2,1(z) . . . Vn(zn)〉. Such equation will be of second order with respect to z
since χ(z) is a second level descendant of Φ2,1, and of first order with respect to the various zi,
and looks like(

b−2∂2
z + f(z, zi)∂z + V (z, zi, ∂zi)

)
〈V1(z1)V2(z2) . . .Φ2,1(z) . . . Vn(zn)〉 = 0 . (2.1.33)

This is the so called BPZ equation [49]. Note that the potential V behaves as

V (z, zi, ∂zi) '
∆i

(z − zi)2
, as z → zi . (2.1.34)

Inserting a primary operators excites a quadratic (i.e. regular) singularities in V . It is possible
to excite higher (i.e. irregular) singularities by considering the so called irregular states [72, 75,
98, 74]. Such states are obtained by colliding together primary states appropriately rescaling
their scaling dimensions. This procedure mimics the confluence of singularities in general theory
of differential equations. We will discuss these states in detail in the main text. For the moment
the BPZ equation takes the form of a partial differential equation. As we will discuss at length
in chapter 3, it will reduce to an ODE of Fuchsian type as b→ 0.

Before moving on, let us comment on why we specialized to Liouville CFT. First of all,
in Liouville CFT both the spectrum and the structure constants are known nonperturbatively.
Since, as sketched in the introduction, we plan to use CFT in order to solve Fuchsian differential
equations, it is to say the least convenient to choose a theory where everything is under control.
Another important reason is the structure of the Liouville spectrum. Being continuous, it can
be analytically continued to contain degenerate and irregular fields, that will play a crucial
role in our discussion, and similarly scaling dimensions appearing as parameters in the BPZ
equation can be continued to basically any value. This will give us the freedom to solve the
Fuchsian ODE in its full generality.

2.2 AGT correspondence
As we mentioned above, the AGT correspondence relates Virasoro conformal blocks to instan-
ton partition functions of N = 2 supersymmetric 4d gauge theories [69] (see [99] for a review).
Such theories are formulated on a background that regulates IR divergences, the Omega back-
ground. Regular and irregular insertions in the CFT are AGT dual to matter multiplets in
the gauge theory, and degenerate fields correspond to defect operators. Crucially for us this
correspondence gives concrete combinatorial formulas to conformal blocks, since their dual in-
stanton partition functions can be computed via localization. In order to limit the technical
details in this thesis, we will just state the relevant formulas. Let us go back to

〈∆∞|Vα1(1)Vαz(z)|∆0〉 =

∫
α∈iR

Cα∞α1αCααzα0Gα

∣∣∣∣F(α1

α∞
α
αz
α0

; z

) ∣∣∣∣2 , (2.2.1)
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Figure 2.1: Arm length AỸ (s) = 4 (white circles) and leg length LY (s) = 2 (black dots) of a
box at the site s = (2, 2) for the pair of superimposed diagrams Y (solid lines) and Ỹ (dotted
lines).

where with respect to (2.1.21) we highlighted the dependence on Liouville momenta and sup-
pressed the dependence on J since Liouville spectrum always has J = 0. Localization in the
AGT dual gauge theory gives for the conformal blocks [100, 101]

F

(
α1

α∞
α
αz
α0

; z

)
= z∆−∆z−∆0(1− z)−2(Q

2
+α1)(Q

2
+αz)×

×
∑
~Y

z|
~Y |zvec

(
~α, ~Y

)∏
θ=±

zhyp

(
~α, ~Y , αz + θα0

)
zhyp

(
~α, ~Y , α1 + θα∞

)
,

(2.2.2)

where the sum runs over all pairs of Young diagrams (Y1, Y2). We denote the size of the pair
|~Y | = |Y1|+ |Y2|, and [100, 101]

zhyp

(
~α, ~Y , µ

)
=
∏
k=1,2

∏
(i,j)∈Yk

(
αk + µ+ b−1

(
i− 1

2

)
+ b

(
j − 1

2

))
,

zvec

(
~α, ~Y

)
=
∏

k,l=1,2

∏
(i,j)∈Yk

E−1 (αk − αl, Yk, Yl, (i, j))
∏

(i′,j′)∈Yl

(Q− E (αl − αk, Yl, Yk, (i′, j′)))−1
,

E (α, Y1, Y2, (i, j)) = α− b−1LY2((i, j)) + b (AY1((i, j)) + 1) .
(2.2.3)

Here LY ((i, j)), AY ((i, j)) denote respectively the leg-length and the arm-length of the box at
the site (i, j) of the diagram Y . If we denote a Young diagram as Y = (ν ′1 ≥ ν ′2 ≥ . . . ) and its
transpose as Y T = (ν1 ≥ ν2 ≥ . . . ), then LY and AY read

AY (i, j) = ν ′i − j , LY (i, j) = νj − i . (2.2.4)

Note that they can be negative if the box (i, j) are the coordinates of a box outside the diagram.
Also, the previous formulae has to be evaluated at ~α = (α1, α2) = (α,−α).

Equation (2.2.2) is a concrete combinatorial series that can be easily evaluated to high
order. It is believed that inherits the convergence properties of the Virasoro conformal blocks
(see for example [102]), that is it should be convergent up to the next insertion in the correlation
function, in this case at z = 1. In appendix C we expand on these combinatorial formulas.
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AdS BHs:
All regular sing.

Flat/extremal AdS BHs:
1 irreg. sing., regulars.

Flat extremal BHs:
2 irreg. sing., regulars.

Figure 2.2: Singularities in black holes wave equations.

2.3 Black holes perturbations
Black hole perturbations, as well as matter fields propagating in black hole backgrounds, satisfy
wave equations in the geometric background excited by the black hole:

�BHφ(t, r, θi) = m2φ(t, r, θi) . (2.3.1)

Such wave equations can be obtained by linearizing Einstein equations around a given back-
ground. The Laplacian is computed in the black hole metric, which for spherically symmetric
d+ 1 dimensional cases takes the form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩd−1 . (2.3.2)

Real and positive zeros of the function f(r), often dubbed redshift factor, correspond to black
hole horizons. The temperature corresponding to a given horizon ri is f ′(ri)/(2π). If f(r) has
a double zero at r = ri, the corresponding temperature vanishes and the horizon is said to be
extremal.

The wave equation (2.3.1) is in general a 2nd order partial differential equation which
depends on the radial coordinate r, time t and angles θi. In this thesis we will always consider
separable backgrounds, that is backgrounds in which the wave equation reduces to a system of
ODEs. Under the Ansatz

φ(t, r, θi) = e−iωtψ(r)
∏
i

Si(θi) (2.3.3)

equation (2.3.1) reduces to a system of ODEs for (ψ, Si). For spherically symmetric black
holes, Si are spherical harmonics. The equation for ψ(r) will be a 2nd order Fuchsian ODE
with singularities at the zeroes of f(r), plus possibly r = 0,∞. It can be recasted in canonical
form as (

∂2
z + V (z)

)
ψ(z) = 0 , (2.3.4)

where z = z(r). The structure of the singularities of the ODE, that is of V (z), generically is
the following:

• simple zeros of f(r) (i.e. non extremal horizons) produce regular (i.e. quadratic) singu-
larities in V (z).

• double zeros of f(r) (i.e. extremal horizons) produce irregular (i.e. higher than quadratic)
singularities in V (z).

• V (z(r =∞)) has a regular singularity for asymptotically AdS or dS spacetimes, and an
irregular singularity for asymptotically flat spacetimes.

• the singularity at r = 0, if present, is regular.

This structure is summarized in figure 2.2. The total number of singularities depends on the
spacetime dimensions and the details of the black hole geometry.
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Since the wave equation (2.3.1) is a second order ODE, in order to find a solution one needs
to specify the relevant boundary conditions. For a black hole to really be black, nothing should
come out of the horizon, at least classically. To make sure that this is the case we will require
that perturbations look like purely ingoing waves close to the outer horizon r+, that is the
largest real solution of f(r) = 0. Expanding the equation for ψ(r) for r ∼ r+ one will find two
linearly independent series expansions centered at the outer horizon, one corresponding to an
ingoing wave and the other to an outgoing wave. Choosing the solution corresponding to an
ingoing wave we get the Frobenius series

ψ(r) = (r − r+)cin
∑
k≥0

ck(r − r+)k , (2.3.5)

where cin correspond to the wave being ingoing, and the various ck can be determined recursively
from the ODE. Most of the physical quantities of interest that we will discuss in the thesis
however can be read off from the behavior of (2.3.5) at r → ∞. This requires a nontrivial
analytic continuation since (2.3.5) is only convergent close to r+. Close to r = ∞ the wave
equation will be a superposition of the linearly independent behavior well defined in that region:

ψ(r) = Aψ(1)
∞ (r) + Bψ(2)

∞ (r) , (2.3.6)

where ψ(1,2)
∞ (r) are Frobenius series that converge as r → ∞ and can be easily determined

treating perturbatively the wave equation. The coefficients A,B on the other hand are much
more complicated to compute. They encode all the details of the analytic continuation of
the series (2.3.5) from r ∼ r+ to r ∼ ∞. As mentioned in the introduction, they are called
connection coefficients of the ODE. For asymptotically flat spacetimes the behavior of the
Frobenius series at infinity is given by

ψ(1,2)
∞ (r) = r−1±2iMωe±iωr

(
1 +O(r−1)

)
, (2.3.7)

where M is the mass of the black hole and ω the frequency of the perturbation. They corre-
spond respectively to outgoing and ingoing waves at infinity. A particularly relevant physical
observable is the one of quasinormal modes (QNM). These modes represent the characteristic
frequencies emitted by the black hole after it gets perturbed. Since a black hole is a dissipative
system, the quasinormal frequencies have a nonvanishing imaginary part. They satisfy the
boundary conditions

ψQNM(r) ' (r − r+)cin , r ∼ r+ ,

ψQNM(r) ' r−1+2iMωeiωr , r ∼ ∞ ,
(2.3.8)

that is the wave is purely ingoing in the horizon and purely outgoing at infinity. These boundary
conditions are only satisfied when A = A(ω) = 0. This equation is on the same ground
as quantization equations in quantum mechanics, and is solved by a numerable infinity of
frequencies ωn. QNMs are extremely relevant observables: due to the no hair theorem in fact,
in general relativity the whole tower of QNMs is determined only in terms of the mass and
the spin (and the charge, if present) of the black hole. Matching analytic predictions with
observations provides a nontrivial test for general relativity. Other relevant observable for
asymptotically flat black holes will be discussed in chapter 4.

Most of the previous discussion holds for spherically symmetric black holes, that is when
the metric is entirely determined in terms of the single function f(r). In the following we will
also discuss more general (but still separable) cases. Even though the details will be more
complicated, all the general ideas will still apply.
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2.4 Holographic correlators
A special class of observables that one can extract from black hole perturbations is the one of
holographic correlators. The AdS/CFT duality states that quantum gravity in asymptotically
AdS spaces in d+ 1 spacetime dimensions is equivalent to a CFT living on the d−dimensional
boundary of AdS. The holographic dictionary sets the Newton constant GN to be proportional
to the inverse of the central charge in the boundary CFT, and the string scale α′ that governs
higher derivative corrections to the gravitational action goes like λ−

1
2 , where λ is the CFT

coupling2. In the limit α′ → 0 and GN → 0 one finds that classical gravity in the AdS bulk is
dual to the boundary CFT in the large central charge and large coupling limit. In particular the
classical gravity action acts as the generating functional of correlators in the boundary CFT at
strong coupling. Accordingly, CFT 2 point functions are captured by quadratic perturbations in
the bulk. When a black hole sits in the bulk, if its radius is sufficiently large, the boundary CFT
will be in thermal equilibrium with the Hawking radiation emitted at the horizon, therefore its
correlation functions will be thermal. The prescription to compute thermal two point functions
goes as follows [103]. We first impose ingoing boundary at the horizon. Then the solution close
to the AdS boundary behaves as (fix d = 4 for concreteness)

ψ(r) = A(ω, `)r∆−4
(
1 +O(r−1)

)
+ B(ω, `)r−∆

(
1 +O(r−1)

)
, m2 = ∆(∆− 4) , (2.4.1)

where m2 is the squared mass of the perturbation, and ω and ` are respectively its frequency
and angular momentum. Since ∆ > 4, ψ is a superposition of a growing (non normalizable)
and decaying (normalizable) mode. It is natural to interpret the non normalizable mode as the
source of the perturbation and the normalizable one as the response. Since 2 point functions
usually measure the response of the system to perturbation, we have

GR(ω, `) = B/A , (2.4.2)

GR in the previous formula is the retarder correlator of the CFT two point function, namely
(more in chapter 5 and appendix F)

iθ(t)〈[O(t, x),O(t, x′)]〉β =
1

4π(∆− 1)(∆− 2)

∫
R
dωe−iωt

∞∑
`=0

(`+ 1)GR(ω, `)
sin(`+ 1)θ

sin θ
.

(2.4.3)
Again the relevant observable is entirely determined by connection coefficients of the Fuchsian
equation.

2Since the boundary CFT is typically a large N QFT, with central charge c ∼ N , λ is the ’t Hooft coupling.

25



26



Chapter 3

Liouville correlators and Heun connection
formulae

3.1 Introduction
In this chapter we perform a detailed study of irregular correlators in Liouville Conformal
Field Theory, of the related Virasoro conformal blocks with irregular singularities and of their
connection formulae. Upon considering their semi-classical limit, we provide explicit expressions
of the connection matrices for the Heun function and a class of its confluences. These result from
the semi-classical limit of Virasoro conformal blocks for the five-point correlation function of
four primaries and a degenerate field and a class of its coalescence limits to irregular conformal
blocks. While the five-point correlator satisfies a linear PDE, namely the BPZ equation [49], its
confluences satisfy a PDE obtained by an appropriate rescaling procedure. As we will discuss in
detail in the paper, BPZ equations reduce in the semi-classical limit to ODEs. For the particular
five-point correlation function mentioned above, this gets identified with Heun’s equation upon
a suitable dictionary. Let us also mention that the method we use can be generalised to general
Fuchsian equations and their confluences upon considering the relevant conformal blocks.

Following a class of coalescences of the singularities and/or specific parameter scalings, from
the configuration of four regular points one naturally obtains a set of confluent irregular blocks
satisfying the corresponding confluent BPZ equations. The Heun functions and its confluences
are solutions of the resulting semiclassical reduced equations.

In the AGT dual gauge theory context, the confluence procedure is interpreted as the
decoupling of massive hypermultiplets [72] or the limit to strongly interacting Argyres-Douglas
theories [64, 75] in the SU(2) Seiberg-Witten theory. The semi-classical limit of CFT coincides
via AGT correspondence with an asymmetric limit in the Ω-background parameters known
as the Nekrasov-Shatashvili (NS) limit [104]. This provides a quantization procedure of the
classical integrable systems associated to the Seiberg-Witten theory [105]. From this viewpoint
Heun equations can be interpreted as Schrödinger equations for these quantum systems.

This chapter is organised as follows.

• In section 2, as a warm-up, we recall the relation between four-point conformal blocks
with the insertion of three primary fields and one level 2 degenerate field and hyperge-
ometric functions and we study in detail the confluences to irregular conformal blocks
and the related special functions. We obtain the connection formulae for the latter as
solutions of the constraints imposed by crossing symmetry.

• In section 3 we systematically study the five point conformal blocks with the insertion of
four primary fields and one level 2 degenerate field. We focus on the explicit computation
of the connection formulae as solutions of the constraints imposed by crossing symmetry
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for the regular case and a class of its confluences. In each case, we also compute the
semi-classical limit.

• In section 4 we provide a dictionary between semiclassical CFT data and Heun equations
in the standard form, we apply the results of the previous section identifying the relevant
semiclassical CFT blocks with Heun functions and provide the connection formulae.

Few technical points are relegated to the Appendices.
The accompanying table collects the dictionary between (irregular) conformal blocks, su-

persymmetric gauge theories and the corresponding Heun functions.

CFT - CB SU(2) Gauge Theory Heun
F Regular Nf = 4 HeunG
1F Confluent Nf = 3 HeunC
1
2
F Reduced Confluent Nf = 2 asymmetric HeunRC

1D1 Doubly Confluent Nf = 2 symmetric HeunDC
1E 1

2
Reduced Doubly Confluent Nf = 1 HeunRDC

1
2
E 1

2
Doubly Reduced Doubly Confluent Nf = 0 HeunDRDC

1
2
F

F 1F 1E 1
2

1
2
E 1

2

1D1

Figure 3.1: Confluence diagram of conformal blocks.

3.2 Warm-up: 4-point degenerate conformal blocks and
classical special functions

We start reviewing standard facts about four-point degenerate conformal blocks on the sphere
and their confluence limits. In particular we review their relation to the hypergeometric function
and its confluent limits, namely Whittaker and Bessel functions.

The hypergeometric function is the solution to the most general second-order linear ODE
with three regular singularities. On the CFT side it arises as the four-point conformal block
on the Riemann sphere when one of the insertions is a degenerate vertex operator.

3.2.1 Hypergeometric functions

Consider the four-point correlation function on the sphere with one degenerate field insertion
Φ2,1 of momentum α2,1 = −2b+b−1

2
(corresponding to ∆2,1 = −1

2
− 3b2

4
):

〈∆∞|V1(1)Φ2,1(z)|∆0〉 . (3.2.1)
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In the following we will drop the subscript 2, 1 and just denote by Φ(z) this degenerate field.
The corresponding BPZ equation takes the form(
b−2∂2

z −
(

1

z − 1
+

1

z

)
∂z +

∆1

(z − 1)2
+

∆0

z2
+

∆∞ −∆1 −∆2,1 −∆0

z(z − 1)

)
〈∆∞|V1(1)Φ(z)|∆0〉 = 0 .

(3.2.2)
This equation has regular singularities at 0, 1,∞. As mentioned above, the corresponding
correlator should therefore be expressed in terms of hypergeometric functions. Indeed, the
above differential equation by definition is solved by the conformal blocks corresponding to the
correlator (3.2.1), which in turn are given in terms of hypergeometric functions. In particular,
the conformal block corresponding to the expansion z ∼ 0 is

F

(
α1

α∞
α0θ

α2,1

α0
; z

)
= z

bQ
2

+θbα0(1− z)
bQ
2

+bα1
2F1

(
1
2

+ b (θα0 + α1 − α∞) , 1
2

+ b (θα0 + α1 + α∞) , 1 + 2bθα0, z
)
,

(3.2.3)
where θ = ± and α0± = α0 ± −b2 are the two fusion channels allowed by the degenerate fusion
rules. Similar formulae hold for the expansions around z ∼ 1 and ∞. Conventionally, this
conformal block is denoted diagrammatically by

F

(
α1

α∞
α0θ

α2,1

α0
; z

)
=

α1

α∞

α2,1

α0

α0θ

. (3.2.4)

We now want to expose the interplay between crossing symmetry, DOZZ factors and the con-
nection formulae for the hypergeometric functions. To this end, let us expand the correlator
once for z ∼ 0 and once for z ∼ 1:

〈∆∞|V1(1)Φ2,1(z)|∆0〉 =
∑
θ=±

Cα0θ
α2,1α0

Cα∞α1α0θ

∣∣∣∣F(α1

α∞
α0θ

α2,1

α0
; z

)∣∣∣∣2 =

=
∑
θ′=±

Cα1θ′
α2,1α1

Cα∞α1θ′α0

∣∣∣∣F(α0

α∞
α1θ′

α2,1

α1
; 1− z

)∣∣∣∣2 .
(3.2.5)

Here Cαβγ are the DOZZ three-point functions, and Cα
βγ = G−1

α Cαβγ are the OPE coefficients
(see Appendix A.1). Equation (3.2.5) is just the statement of crossing symmetry, due to the
associativity of the OPE. The two expansions are related by the connection matrix Mθθ′ as
follows

F

(
α1

α∞
α0θ

α2,1

α0
; z

)
=
∑
θ′=±

Mθθ′(bα0, bα1; bα∞)F

(
α0

α∞
α1θ′

α2,1

α1
; 1− z

)
. (3.2.6)

Plugging the latter into (3.2.5) determinesMθθ′ to be

Mθθ′(bα0, bα1; bα∞) =
Γ(−2θ′bα1)Γ(1 + 2θbα0)

Γ
(

1
2

+ θbα0 − θ′bα1 + bα∞
)

Γ
(

1
2

+ θbα0 − θ′bα1 − bα∞
) , (3.2.7)

which is indeed the connection matrix for hypergeometric functions. Diagrammatically, we can
express the connection formula as

α1

α∞

α2,1

α0

α0θ

=
∑
θ′=±

Mθθ′

α0

α∞

α2,1

α1

α1θ′

. (3.2.8)

29



3.2.2 Whittaker functions

Colliding the singularities at 1 and∞ of the hypergeometric functions we obtain the Whittaker
functions, which are related to the confluent hypergeometric functions. They have a regular
singularity at 0 and an irregular singularity of rank 1 at ∞. To describe the confluence of two
regular singularities in CFT we introduce the rank 1 irregular state, denoted by 〈µ,Λ|. It lives
in a Whittaker module and it is defined by the following properties

〈µ,Λ|L0 = Λ∂Λ〈µ,Λ|
〈µ,Λ|L−1 = µΛ〈µ,Λ|

〈µ,Λ|L−2 = −Λ2

4
〈µ,Λ|

〈µ,Λ|L−n = 0 , n > 2 .

(3.2.9)

Note that the action of L0 is not diagonal, and hence 〈µ,Λ| makes no reference to any Verma
module. Equivalently, one can describe this state by a confluence limit of primary operators:

〈µ,Λ| ∝ lim
η→∞

t∆t−∆〈∆|Vt(t) (3.2.10)

with1

∆ =
Q2

4
−
(
µ+ η

2

)2

, ∆t =
Q2

4
−
(
µ− η

2

)2

, t =
η

Λ
. (3.2.11)

We fix the normalization of the irregular state by giving its overlap with a primary state, namely

〈µ,Λ|∆〉 = |Λ|2∆Cµα , (3.2.12)

with

Cµα =
e−iπ∆Υb(Q+ 2α)

Υb

(
Q
2

+ µ+ α
)

Υb

(
Q
2

+ µ− α
) . (3.2.13)

The Λ-dependence is fixed by the L0-action, and Cµα is a normalization function that only
depends on µ and α, and is calculated in Appendices A.2, B.1. The notation reflects the fact
that C can be interpreted as a collided three-point function [75]. The correlator

〈µ,Λ|Φ(z)|∆〉 (3.2.14)

satisfies the BPZ equation(
b−2∂2

z −
1

z
∂z +

∆

z2
+
µΛ

z
− Λ2

4

)
〈µ,Λ|Φ(z)|∆〉 = 0 , (3.2.15)

that has a rank 1 irregular singularity at z = ∞ and a regular singularity at z = 0. Corre-
spondingly, we expect this correlator to be given in terms of confluent hypergeometric functions.
Indeed, for z ∼ 0 one finds by solving the differential equation that the corresponding confluent
(or irregular) conformal block is given by a Whittaker function. In particular, the two solutions
are z

b2

2 Mbµ,±bα(bΛz), where the Whittaker M -function has a simple expansion around z ∼ 0:

Mbµ,bα(bΛz) = (bΛz)
1
2

+bα (1 +O(bΛz)) . (3.2.16)

We can compute the confluent conformal block as

1F

(
µαθ

α2,1

α
; Λz

)
= Λ∆θ(bΛ)−

1
2
−θbαz

b2

2 Mbµ,θbα(bΛz) . (3.2.17)

1Note that this procedure mimics the decoupling of a mass in the AGT-dual gauge theory.
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by expanding the OPE between Φ(z) and |∆〉 and projecting on 〈µ,Λ|. Comparing this with
the expansion ofM one obtains the prefactors written above. Here the subscript 1 indicates the
presence of a rank 1 irregular singularity at infinity. We represent this block diagramatically
by

1F

(
µαθ

α2,1

α
; Λz

)
=

µ

α2,1

α
αθ

. (3.2.18)

The double line denotes the rank 1 irregular state, and the fat dot the projection onto a primary
state. For z ∼ ∞ we get an intrinsically different kind of confluent conformal block since we are
now expanding z near an irregular singularity of rank 1, dubbed in [106] confluent conformal
block of 2nd kind. We denote such a conformal block by the letter D and find

1D

(
µ
α2,1 µ+ α;

1

Λz

)
= Λ∆+∆2,1e−iπbµbbµ(Λz)

b2

2 W−bµ,bα(e−iπbΛz) ,

1D

(
µ
α2,1 µ− α;

1

Λz

)
= Λ∆+∆2,1b−bµ(Λz)

b2

2 Wbµ,bα(bΛz) ,

(3.2.19)

where W is the Whittaker function with a simple asymptotic expansion around z ∼ ∞. This
block is obtained by doing the OPE between the irregular state and the degenerate field, which
is derived in Appendix B.1, and then projecting on |∆〉. Once again, the prefactors are fixed
by comparing with the expansion of W . We represent this conformal block diagramatically by

1D

(
µ
α2,1 µθ α;

1

Λz

)
=

µ

α2,1

α
µθ

. (3.2.20)

Crossing symmetry now implies

〈µ,Λ|Φ(z)|∆〉 =
∑
θ=±

Cαθ
α2,1,α

Cµαθ

∣∣∣∣1F(µαθ α2,1

α
; Λz

)∣∣∣∣2 =
∑
θ′=±

Bµθ′
α2,1,µ

Cµθ′α

∣∣∣∣1D(µα2,1 µθ′ α;
1

Λz

)∣∣∣∣2 .
(3.2.21)

Here B is the irregular OPE coefficient arising from the OPE between the irregular state and
the degenerate field. We calculate it in Appendices A.2, B.1, and it is given by

Bµ±
α2,1,µ

= e
iπ
(

1
2
±bµ+ b2

4

)
. (3.2.22)

As for the hypergeometric function, we can make an Ansatz for the connection formula for
these irregular conformal blocks of the form

bθbα1F

(
µαθ

α2,1

α
; Λz

)
=
∑
θ′=±

b−
1
2
−θ′bµNθθ′(bα, bµ) 1D

(
µ
α2,1 µθ′ α;

1

Λz

)
. (3.2.23)

The constraints coming from crossing symmetry (3.2.21) are solved by the irregular connection
coefficients

Nθθ′(bα, bµ) =
Γ(1 + 2θbα)

Γ
(

1
2

+ θbα− θ′bµ
)eiπ( 1−θ′

2

)
( 1

2
−bµ+θbα) . (3.2.24)

These are just the connection coefficients for Whittaker functions. In fact, in Appendix B.1
we argue the other way around, namely we determine the normalization function Cµα and the
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irregular OPE coefficient Bµ±
α2,1,µ

by using the known connection coefficients Nθθ′ for Whittaker
functions. This shows the consistency of our approach. Let us emphasize for latter purposes
that the functions Nθθ′ solve the constraint (3.2.21), which will appear later in a different
context. We represent this connection formula diagrammatically by

µ

α2,1

α
αθ

=
∑
θ′=±

Nθθ′
µ

α2,1

α
µθ′

. (3.2.25)

3.2.3 Bessel functions

There is a natural limiting procedure which reduces a rank 1 irregular singularity to a rank
1/2 one. To describe the latter in CFT, let us introduce the rank 1/2 irregular state 〈Λ2| via
defining properties

〈Λ2|L0 = Λ2∂Λ2〈Λ2|

〈Λ2|L−1 = −Λ2

4
〈Λ2|

〈Λ2|L−n = 0 , n > 1 .

(3.2.26)

It can be obtained from the rank 1 irregular state via the limit2

〈Λ2| = lim
µ→∞
〈µ,−Λ2

4µ
| . (3.2.27)

We see that reducing a rank 1 to a rank 1/2 singularity corresponds to further decoupling a
mass in the AGT dual gauge theory. We normalize the rank 1/2 state as

〈Λ2|∆〉 = |Λ2|2∆Cα , Cα = 2−4∆e−2πi∆Υb(Q+ 2α) . (3.2.28)

This normalization function is calculated in Appendices A.3, B.2. Consider the following cor-
relation function involving the rank 1/2 state:

〈Λ2|Φ(z)|∆〉 . (3.2.29)

which correspondingly displays a rank 1/2 singularity at infinity. This is reflected in the BPZ
equation (

b−2∂2
z −

1

z
∂z +

∆

z2
− Λ2

4z

)
〈Λ2|Φ(z)|∆〉 = 0 . (3.2.30)

Solving this differential equation one finds that the corresponding rank 1/2 irregular conformal
block is given by a modified Bessel function Iν(x) as

1
2
F
(
αθ α2,1 α; Λ

√
z
)

= Γ(1 + 2θbα)Λ2∆θ

(
bΛ

2

)−2θbα

z
bQ
2 I2θbα(bΛ

√
z) . (3.2.31)

Here the subscript 1
2
indicates the presence of a rank 1/2 singularity at infinity. This conformal

block is obtained by doing the OPE between Φ and |∆〉 and then projecting the result on 〈Λ2|.
The prefactors are fixed by comparing this with the following expansion of the Bessel function

I2θbα(bΛ
√
z) =

(bΛ
√
z/2)2θbα

Γ(1 + 2θbα)

(
1 +O(bΛ

√
z)
)
. (3.2.32)

2Note that this limit corresponds to the well known holomorphic decoupling limit of a massive hypermultiplet
in the AGT dual gauge theory.
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We represent this conformal block diagramatically by

1
2
F
(
αθ α2,1 α; Λ

√
z
)

=

α2,1

α
αθ

. (3.2.33)

Here the wiggly line denotes the rank 1/2 irregular state, and the fat dot represents the pairing
with a primary state. For z ∼ ∞ we get a different kind of irregular conformal block, since we
are now expanding for z near an irregular singularity of rank 1/2. We denote such a conformal
block by the letter E

1
2
E(+)

(
α2,1 α;

1

Λ
√
z

)
=

√
2b

π
e−

iπ
2 (Λ2)∆− b

2

4 z
bQ
2 K2bα(e−iπbΛ

√
z) ,

1
2
E(−)

(
α2,1 α;

1

Λ
√
z

)
=

√
2b

π
(Λ2)∆− b

2

4 z
bQ
2 K2bα(bΛ

√
z) ,

(3.2.34)

where K is the modified Bessel function of the second kind, which has a nice asymptotic
expansion for z ∼ ∞. This block is obtained from the OPE between the irregular rank 1/2
state and the degenerate field which we derived in Appendix B.2, and then by taking the scalar
product with |∆〉. We represent this block diagramatically by

1
2
E(θ)

(
α2,1 α;

1

Λ
√
z

)
=

α2,1

α
θ

. (3.2.35)

Crossing symmetry implies that

〈Λ2|Φ(z)|∆〉 =
∑

θ=±C
αθ
α2,1,α

Cαθ

∣∣∣ 1
2
F (αθ α2,1 α; Λ

√
z)
∣∣∣2 =

∑
θ′=±Bα2,1Cα

∣∣∣ 1
2
E(θ′)

(
α2,1 α; 1

Λ
√
z

)∣∣∣2 .
(3.2.36)

Here Bα2,1 is the irregular OPE coefficient arising from the OPE between the irregular rank
1/2 state and the degenerate field:

Bα2,1 = 2b
2

e
iπbQ

2 . (3.2.37)

These functions are derived in Appendix B.2. We can now make an Ansatz for the connection
formula for these irregular conformal blocks:

b2θbα
1
2
F
(
αθ α2,1 α; Λ

√
z
)

=
∑
θ′=±

b−1/2Qθθ′(bα) 1
2
E(θ′)

(
α2,1 α;

1

Λ
√
z

)
. (3.2.38)

The crossing symmetry condition (3.2.36) gives constraints on the irregular connection coeffi-
cients, which are solved by

Qθθ′(bα) =
22θbα

√
2π

Γ(1 + 2θbα)e
iπ
(

1−θ′
2

)
( 1

2
+2θbα) . (3.2.39)

These are of course nothing else than the connection coefficients for Bessel functions, including
the relevant prefactors. Similar constraints of the form (3.2.36) will reappear later. We represent
the connection formula by

α2,1

α
αθ

=
∑
θ′=±

Qθθ′

α2,1

α
θ′

. (3.2.40)
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3.3 5-point degenerate conformal blocks, confluences and
connection formulae

In this section we consider the relevant CFT correlators obeying the BPZ equations which
reduce to Heun equations in the appropriate classical limit. Notice that for more than three
vertex insertions BPZ equations on the sphere are richer than the corresponding ODE due to
the presence of the corresponding moduli. This implies that a suitable classical limit (NS limit),
engineered to decouple the moduli dynamics, is needed to recover the corresponding ODE.

We derive explicit connection formulae for the relevant conformal blocks by making use
of crossing symmetry of the CFT correlators. In the classical limit, these generate explicit
solutions of the connection problem for the Heun equations.

3.3.1 Regular conformal blocks

General case

The five-point function with one degenerate insertion in Liouville CFT satisfies the BPZ equa-
tion(
b−2∂2

z +
∆1

(z − 1)2
− ∆1 + t∂t + ∆t + z∂z + ∆2,1 + ∆0 −∆∞

z(z − 1)
+

∆t

(z − t)2
+

t

z(z − t)
∂t −

1

z
∂z +

∆0

z2

)
〈∆∞|V1(1)Vt(t)Φ(z)|∆0〉 = 0 .

(3.3.1)
The five-point function can be expanded in the region z � t� 1 as follows

〈∆∞|V1(1)Vt(t)Φ(z)|∆0〉 =
∑
θ=±

∫
dαCα0θ

α2,1α0
Cα
αtα0θ

Cα∞α1αF

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t̄,

z̄

t̄

)
.

(3.3.2)
As usual the conformal blocks can be computed via OPEs. The result is naturally an expansion
in the variables t and z/t. Conformal blocks are usually denoted diagrammatically as

α1

α∞

αt α2,1

α0

α α0θ

= F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
. (3.3.3)

An explicit combinatorial formula for this conformal block is given in Appendix D. The same
correlator can be expanded for z ∼ t and small t after the Möbius transformation x → x−t

1−t ,
yielding

〈∆∞|V1(1)Vt(t)Φ(z)|∆0〉 =
∣∣(1− t)∆∞−∆1−∆t−∆2,1−∆0

∣∣2 〈∆∞|V1(1)V0

(
t

t− 1

)
Φ

(
z − t
1− t

)
|∆t〉 =

=
∑
θ=±

∫
dαCαtθ

α2,1αt
Cα
α0αtθ

Cα∞α1α

∣∣∣∣(1− t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)∣∣∣∣2 .
(3.3.4)

Diagramatically, this conformal block is

α1

α∞

α0 α2,1

αt
α αtθ

= F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)
. (3.3.5)
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We notice that the diagrams just represent the order in which the OPEs are performed, ne-
glecting factors such as Jacobians that arise from the Möbius transformations. By crossing
symmetry the two expansions should agree, so that∑
θ=±

∫
dαCα0θ

α2,1α0
Cα
αtα0θ

Cα∞α1α

∣∣∣∣F(α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)∣∣∣∣2 =

=
∑
θ=±

∫
dαCαtθ

α2,1αt
Cα
α0αtθ

Cα∞α1α

∣∣∣∣(1− t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)∣∣∣∣2 .
(3.3.6)

which can be conveniently recast as∫
dαCα∞α1α

∑
θ=±

(
Cα0θ
α2,1α0

Cα
αtα0θ

∣∣∣∣F(α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)∣∣∣∣2 +

− Cαtθ
α2,1αt

Cα
α0αtθ

∣∣∣∣(1− t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)∣∣∣∣2) = 0 .

(3.3.7)

By imposing the vanishing of the integrand we get a constraint analogous to (3.2.5), which
analogously to (3.2.6) we solve as3

F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
=

=
∑
θ′=±

Mθθ′(bα0, bαt; bα)eiπ(∆−∆0−∆2,1−∆t)(1− t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)
,

(3.3.8)
whereMθθ′ are the hypergeometric connection coefficients defined in (3.2.7). Note indeed that
in (3.3.8) the functional form of the connection coefficients depends on the local properties of
the conformal block in the vicinity of the degenerate vertex insertion as can be seen form the
factorized form of (3.3.7). Diagrammatically, the connection formula (3.3.8) reads

α1

α∞

αt α2,1

α0

α α0θ

=
∑

θ′=±Mθθ′

α1

α∞

α0 α2,1

αt
α αtθ′

.

(3.3.9)
Conformal blocks for small z can also be connected to the expansion for z ∼ 1, z ∼ ∞ passing
through the region t� z � 1. The conformal block in that region is

α1

α∞

α2,1 αt

α0

α αθ

= F

(
α1

α∞
α
α2,1 αθ

αt
α0

; z,
t

z

)
. (3.3.10)

Then, crossing symmetry relates this block to the expansion for z ∼ 0 via

〈∆∞|V1(1)Vt(t)Φ(z)|∆0〉 = 〈∆∞|V1(1)Φ(z)Vt(t)|∆0〉 , (3.3.11)
3The phase appearing in the RHS of equation (3.3.8) is fixed imposing that the overall leading powers of

(1−t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
;

t

t− 1
,
t− z
t

)
∼ e−iπ(∆−∆t−∆2,1−∆0)t∆−∆0−∆tθ (t−z)∆tθ−∆2,1−∆2,1 (1 + . . . )

agree with the leading powers of the OPEs of the full correlator, where no explicit phase appears.
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therefore, by comparing (3.3.11) with (3.3.3) we get∑
θ=±

∫
dαCα0θ

α2,1α0
Cα
αtα0θ

Cα∞α1α

∣∣∣∣F(α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)∣∣∣∣2 =

=
∑
θ=±

∫
dαCα

α2,1αθ
Cαθ
αtα0

Cα∞α1α

∣∣∣∣F(α1

α∞
α
α2,1 αθ

αt
α0

; z,
t

z

)∣∣∣∣2 ,
(3.3.12)

and following the same argument as for the previous case we find

F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
=
∑
θ′=±

Mθθ′(bα0, bα; bαt)F

(
α1

α∞
α
α2,1 αθ′

αt
α0

; z,
t

z

)
. (3.3.13)

Now we can connect expansions in the intermediate region to expansions for z ∼ ∞ again
invoking crossing symmetry. Performing the transformation x → t/x on the LHS of (3.3.11)
we get

〈∆∞|V1(1)Φ(z)Vt(t)|∆0〉 =
∣∣t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1

∣∣2 〈∆0|Vt(1)V1(t)Φ

(
t

z

)
|∆∞〉 , (3.3.14)

that implies∑
θ=±

∫
dαCαtα0αC

α
α2,1αθ

Cαθ
α∞α1

∣∣∣∣F(α1

α∞
αθ
α2,1 α

αt
α0

; z,
t

z

)∣∣∣∣2 =

=
∑
θ=±

∫
dαCαtα0αC

α∞θ
α2,1α∞C

α
α∞θα1

∣∣∣∣t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1F

(
αt
α0
α
α1 α∞θ′

α2,1

α∞
; t,

1

z

)∣∣∣∣2 ,
(3.3.15)

and finally

F

(
α1

α∞
αθ
α2,1 α

αt
α0

; z, t
z

)
=
∑

θ′Mθθ′(bα, bα∞; bα1)t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1F

(
αt
α0
α
α1 α∞θ′

α2,1

α∞
; t, 1

z

)
.

(3.3.16)
Combining equations (3.3.13) and (3.3.16) we can write

F

(
α1

α∞
α
αt α0θ1

α2,1

α0
; t,

z

t

)
=

=
∑
θ2θ3

Mθ1θ2(bα0, bα; bαt)M(−θ2)θ3(bα, bα∞; bα1)t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1F

(
αt
α0
αθ2

α1 α∞θ3
α2,1

α∞
; t,

1

z

)
.

(3.3.17)
Diagrammatically, this reads

α1

α∞

αt α2,1

α0

α α0θ1

=
∑

θ2θ3
Mθ1θ2M(−θ2)θ3

αt

α0

α1 α2,1

α∞
αθ2 α∞θ3

.

(3.3.18)
The diagrams provide a straightforward way to generalize the connection formula to an arbitrary
pair of points. Indeed, writing down the diagram it is immediate to guess the correct Mθθ′

factors and the conformal blocks that will enter the connection formula. As an example, the
connection formula for the expansions for z ∼ 1 and z ∼ ∞ with t� 1 are given by

αt

α0

α∞ α2,1

α1

α α1θ

=
∑

θ′Mθθ′

αt

α0

α1 α2,1

α∞
α α∞θ′

,

(3.3.19)
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that is

t∆∞+∆1+∆2,1−∆t−∆0(1− t)∆∞+∆0+∆2,1−∆t−∆1(z − t)−2∆2,1F

(
α0

αt
α
α∞ α1θ

α2,1

α1
; t,

z − 1

z − t

)
=

=
∑
θ′

Mθθ′(bα1, bα∞; bα)t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1F

(
αt
α0
α
α1 α∞θ′

α2,1

α∞
; t,

1

z

)
.

(3.3.20)
Note that combining all the previous formulae we manage to analytically continue the expansion
in z ∼ 0 of the conformal block in all the complex plane for t � 1. It is straightforward to
generalize the previous formulae for t ∼ 1, t ∼ ∞. All in all, for any value of t we can connect
all the possible expansions in z. The analytic continuation in the t−plane is more involved
and can be done via the fusion kernel. As a concluding remark, note that there is a Möbius
tranformation in each region of expansions of the correlator, say z � t� 1 for reference, that
only exchanges α∞ and α1 and that does not change the region of validity of the expansion.
This transformation is usually called braiding. This gives, up to a Jacobian,

α∞

α1

αt α2,1

α0

α α0±

= F

(
α∞
α1

α
αt α0θ

α2,1

α0
;

t

t− 1
,
z

t

t− 1

z − 1

)
. (3.3.21)

Braiding changes the expansion variables in the conformal blocks according to the new positions
of the insertions and as such can be used to generate other expansions and the related connection
coefficients.

Semiclassical limit

Let us consider the semiclassical limit of Liouville theory, that is the double scaling limit

b→ 0, αi →∞, bαi = ai finite. (3.3.22)

In this limit the conformal blocks and the corresponding BPZ equation greatly simplify. The
divergence exponentiates and the z dependence becomes subleading, namely4

F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
= t∆−∆t−∆0θz

bQ
2

+θbα0 exp

[
1

b2

(
F (t) + b2W (z/t, t) +O(b4)

)]
.

(3.3.23)
Here F (t) is the classical conformal block, related to the conformal block without degenerate
insertion via

F

(
α1

α∞
α
αt
α0

; t

)
= t∆−∆t−∆0eb

−2(F (t)+O(b2)) . (3.3.24)

The divergences in the conformal blocks can be cured by dividing by the conformal block
without the degenerate insertion. We denote the resulting finite, semiclassical conformal block
by the letter F :

F
(
a1

a∞
a
at a0θ

a2,1

a0
; t, z

t

)
= limb→0

F

(
α1

α∞
α
αt

α0θ

α2,1

α0
;t, z
t

)
F

α1

α∞
α
αt
α0

;t

 = t−θa0z
1
2

+θa0e−
θ
2
∂a0F (t) (1 +O(t, z/t)) .

(3.3.25)
4Here and in the following we do not indicate the dependence of F and W on the rescaled momenta.
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Note that the conformal block with the degenerate insertion and z, t ∼ 0 contains a classical
conformal block depending on a0θ = a0 − θ b

2

2
. Dividing by the four-point function without the

degenerate insertion, which depends on a0, gives an incremental ratio that in the limit (3.3.22)
becomes the derivative ∂a0F (t). The BPZ equation (3.3.1) simplifies in the semiclassical limit
as well. The t−derivative acting on the conformal block gives

t∂tF

(
α1

α∞
α
αt α0θ

α2,1

α0
; t, z

t

)
= b−2

(
−1

4
− a2 + a2

t + a2
0 + t∂tF (ai, a, t) +O(b2)

)
F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t, z

t

)
,

(3.3.26)
therefore the t−derivative becomes a multiplication by a z-independent factor at leading order
in b2 and the BPZ equation becomes an ODE. Defining

u(0) = lim
b→0

b2t∂t logF

(
α1

α∞
α
αt
α0

; t

)
, (3.3.27)

where the superscript indicates that the block is expanded for t ∼ 0, the BPZ equation (3.3.1)
in the semiclassical limit reads(
∂2
z +

1
4
− a2

1

(z − 1)2
−

1
2
− a2

1 − a2
t − a2

0 + a2
∞ + u(0)

z(z − 1)
+

1
4
− a2

t

(z − t)2
+

u(0)

z(z − t)
+

1
4
− a2

0

z2

)
F
(
a1

a∞
a
at a0θ

a2,1

a0
; t,

z

t

)
= 0 .

(3.3.28)
The solution of the previous ODE for z ∼ t is given by the semiclassical block

(t− 1)
1
2F
(
a1

a∞
a
a0 atθ

a2,1

at
;

t

t− 1
,
t− z
t

)
= lim

b→0
(t− 1)−∆2,1

F

(
α1

α∞
α
α0 αtθ

α2,1

αt
; t
t−1
, t−z

t

)
F

(
α1

α∞
α
α0

αt
; t
t−1

) =

= lim
b→0

eiπ(∆−∆0−∆2,1−∆t)(1− t)∆∞−∆1−∆t−∆2,1−∆0F

(
α1

α∞
α
α0 αtθ

α2,1

αt
; t
t−1
, t−z

t

)
F

(
α1

α∞
α
αt
α0

; t

) ,

(3.3.29)
therefore the connection formula (3.3.8) descends to the semiclassical blocks to be

F
(
a1

a∞
a
at a0θ

a,2,1
a0

; t,
z

t

)
=
∑
θ′

Mθθ′(a0, at; a)(t− 1)
1
2F
(
a1

a∞
a
a0 atθ′

a2,1

at
;

t

t− 1
,
t− z
t

)
.

(3.3.30)
Note that the intermediate momentum a can be computed as a function of the parameters
appearing in the semiclassical BPZ equation inverting the relation (3.3.27). Similarly, keeping
t ∼ 0 we can analytically continue the solution to the other singularities, that is for z ∼ 1
and z ∼ ∞. In particular, we can directly connect z ∼ 0 and z ∼ ∞ passing though the
intermediate region. The semiclassical block for z ∼ ∞ reads

t−
1
2 zF

(
at
a0
a
a1 a∞θ

a2,1

a∞
; t,

1

z

)
=

= lim
b→0

t∆∞+∆1+∆2,1−∆0−∆tz−2∆2,1F

(
αt
α0
α
α1 α∞θ′

α2,1

α∞
; t, 1

z

)
F

(
α1

α∞
α
αt
α0

; t

) = lim
b→0

t∆2,1z−2∆2,1F

(
αt
α0
α
α1 α∞θ′

α2,1

α∞
; t, 1

z

)
F

(
αt
α0
α
α1

α∞
; t

) .

(3.3.31)
The connection formula (3.3.17) from z ∼ 0 to z ∼ ∞ involves a conformal block with two
shifted momenta, that is

F

(
αt
α0
αθ′

α1 α∞θ
α2,1

α∞
; t, 1

z

)
= t∆θ′−∆1−∆∞θ

(
t
z

) bQ
2

+θbα∞
exp

[
1
b2
F
(
a− θ′ b2

2
, t
)

+W
(
a− θ′ b2

2
, t
)

+O(b2)
]
.

(3.3.32)
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At first order in b2

F

(
a− θ′ b

2

2
, t

)
+ b2W

(
a− θ′ b

2

2
, t

)
= F (a, t)− θ′b2

2
∂aF (a, t) + b2W (a, t) +O(b4) , (3.3.33)

therefore in the semiclassical limit

F

(
αt
α0
αθ′

α1 α∞θ
α2,1

α∞
; t,

1

z

)
∼ t−θ

′αe−
θ′
2
∂aF (t)F

(
αt
α0
α
α1 α∞θ

α2,1

α∞
; t,

1

z

)
, as b→ 0 . (3.3.34)

This is consistent with the fact that we expect only two linearly independent z behaviors. The
connection formula (3.3.17) simplifies to

F
(
a1

a∞
a
at a0θ

a2,1

a0
; t,

z

t

)
=

=
∑
θ′

(∑
σ

Mθσ(a0, a; at)M(−σ)θ′(a, a∞; a1)t−σae−
σ
2
∂aF

)
t−

1
2 zF

(
at
a0
a
a1 a∞θ′

a2,1

a∞
; t,

1

z

)
.

(3.3.35)
Explicitly, the connection coefficients are∑

σ=±

Mθσ(a0, a; at)M(−σ)θ′(a, a∞; a1)t−σae−
σ
2
∂aF =

=
∑
σ=±

Γ(1− 2σa)Γ(−2σa)Γ(1 + 2θa0)Γ(−2θ′a∞)t−σae−
σ
2
∂aF

Γ
(

1
2

+ θa0 − σa+ at
)

Γ
(

1
2

+ θa0 − σa− at
)

Γ
(

1
2
− σa− θ′a∞ + a1

)
Γ
(

1
2
− σa− θ′a∞ − a1

) .
(3.3.36)

For future reference, the semiclassical block for small t and z ∼ 1 is given by

(t(1− t))−
1
2 (t− z)F

(
a0

at
a
a∞ a1θ

a2,1

a1
; t, 1−z

t−z

)
= limb→0 (t(1− t))∆2,1 (t− z)−2∆2,1

F

(
α0

αt
α
α∞

α1θ

α2,1

α1
;t, 1−z
t−z

)
F

α0

αt
α
α∞
α1

;t

 .

(3.3.37)
Similarly one can obtain the connection coefficients for the other t−expansions. As an example,
let us schematically consider the case t� 1. The semiclassical block for z ∼ 0 reads

t
1
2F
(
at
a∞

a
a1 a0θ

a2,1

a0
;
1

t
, z

)
= lim

b→0

t−∆2,1F

(
αt
α∞

α
α1 α0θ

α2,1

α0
; 1
t
, z

)
F

(
αt
α∞

α
α1

α0
; 1
t

) . (3.3.38)

Still the t−derivative decouples, leaving behind

u(∞) = lim
b→0

b2t∂t log t∆−∆t−∆1−∆0F

(
αt
α∞

α
α1

α0
;
1

t

)
. (3.3.39)

Note that the semiclassical BPZ equation formally remains the same, with the substitution5

of u(0) with u(∞). Indeed, the intermediate momentum α is now determined in terms of u(∞).
The z ∼ 1 expansion gives

(t− 1)
1
2 eiθπaF

(
at
a∞

a
a1 a0θ

a2,1

a0
; 1
t−1
, 1− z

)
= limb→0(t− 1)−∆2,1eiθπbα

F

(
αt
α∞

α
α0

α1θ

α2,1

α1
; 1
1−t ,1−z

)
F

 αt
α∞

α
α0

α1
; 1
1−t

 ,

(3.3.40)
5From the gauge theory viewpoint this amounts to a change of frame from the electric to the monopole one.
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and the corresponding connection formula reads

t
1
2F
(
at
a∞

a
a1 a0θ

a2,1

a0
; 1
t
, z

)
=
∑

θ′=±1Mθθ′ (a0, a1; a) (t− 1)
1
2 eiθπaF

(
at
a∞

a
a1 a0θ′

a2,1

a0
; 1
t−1
, 1− z

)
.

(3.3.41)
All other connection formulae at t� 1 can be obtained similarly. The same can be done when
t ∼ 1. Note that again the semiclassical BPZ equation looks formally as (3.3.28) upon the
substitution6 of u(0) with

u(1) = lim
b→0

b2t∂t logF

(
α0

α∞
α
αt
α1

; 1− t
)
. (3.3.42)

3.3.2 Confluent conformal blocks

General case

Consider the correlation function

〈µ,Λ|V1(1)Φ(z)|∆0〉 . (3.3.43)

It solves the BPZ equation(
b−2∂2

z −
(

1

z
+

1

z − 1

)
∂z +

Λ∂Λ −∆2,1 −∆1 −∆0

z(z − 1)
+

∆1

(z − 1)2
+

∆0

z2
+
µΛ

z
− Λ2

4

)
〈µ,Λ|Φ(z)V1(1)|∆0〉 = 0 ,

(3.3.44)
and can be decomposed into confluent conformal blocks in different ways. They are all given
as collision limits of regular conformal blocks.

Small Λ blocks We focus first on the case where the conformal blocks are given as an
expansion in Λ. The block for z ∼ 0 is defined as7

1F

(
µ α

α1 α0θ
α2,1

α0
; Λ, z

)
= Λ∆z

bQ
2

+θbα0
1F̃

(
µ α

α1 α0θ
α2,1

α0
; Λ, z

)
= Λ∆z

bQ
2

+θbα0 limη→∞ F̃

(
η−µ

2
η+µ

2

α
α1 α0θ

α2,1

α0
; Λ
η
, z

)
.

(3.3.45)
This is nothing but the standard collision limit of 〈∆∞| and Vt(t) as defined in (3.2.11). The
tilde on the conformal block means it has no classical part, i.e. is normalized such that the first
term is 1. This conformal block can also be computed directly by doing the OPE of Φ(z) with
|∆0〉, then the OPE of V1(1) with the result which we specify to be in the Verma module ∆α,
and then contracting with 〈µ,Λ|. In the diagrammatic notation introduced in section 3.2.2, we
represent it by

1F

(
µ α

α1 α0θ
α2,1

α0
; Λ, z

)
=

µ

α1 α2,1

α0

α α0θ

. (3.3.46)

The double line represents the rank 1 irregular state, and the dot the pairing with a primary
state. For z ∼ 1, the corresponding block can be expressed as

eµΛ
1F

(
−µ αα0 α1θ

α2,1

α1
; Λ, 1− z

)
=

−µ

α0 α2,1

α1

α α1θ

, (3.3.47)

6This is the dyon frame.
7The argument η+µ

2 should appear with a minus sign as in Appendix A.2. Here and in the following we
don’t write it due to the symmetry of the conformal block. The reader wishing to compare with the Nekrasov
partition function should take this sign into account as in Appendix C.
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where the exponential factor and the argument −µ arise from the corresponding Möbius trans-
formation8. In the intermediate region, where z � 1 but Λz � 1, the corresponding block is

z−∆2,1−∆1−∆0
1F

(
µ αθ

α2,1 α
α1

α0
; Λz,

1

z

)
=

µ

α2,1 α1

α0

αθ α

. (3.3.48)

In the deep irregular region where z � 1 and Λz � 1, the conformal block is given by a
different collision limit, proposed in [106]:

1D

(
µ
α2,1 µθ α

α1

α0
; Λ,

1

Λz

)
= eθbΛz/2Λ∆2,1+∆ (Λz)−θbµ+ b2

2 ×

× lim
η→∞

(
1− η

Λz

)− bQ
2
−θ b

2
(µ−η)

F̃

(
α1

α0
α
µ−η

2 µ+η−θb
2

α2,1
µ+η

2

;
Λ

η
,
η

Λz

)
.

(3.3.49)

Whenever z approaches an irregular singularity of rank 1, we denote the corresponding con-
formal block by D. This conformal block can also be computed directly by doing the OPE
between 〈µ,Λ| and Φ(z), then the OPE of the result with V1(1) and contracting with |∆0〉.
Diagramatically, we write

1D

(
µ
α2,1 µθ α

α1

α0
; Λ,

1

Λz

)
=

µ

α2,1 α1

α0

µθ α

. (3.3.50)

The connection problem between 0 and 1 is solved in the same way as for the regular conformal
blocks, since we are never near the irregular singularity. The result is

1F

(
µ α

α1 α0θ
α2,1

α0
; Λ, z

)
=
∑
θ′=±

Mθθ′(bα0, bα1; bα)eµΛ
1F

(
−µ αα0 α1θ′

α2,1

α1
; Λ, 1− z

)
.

(3.3.51)
Diagrammatically:

µ

α1 α2,1

α0

α α0θ

=
∑

θ′=±Mθθ′

−µ

α0 α2,1

α1

α α1θ′

.

(3.3.52)
Instead, to solve the connection problem between 1 and ∞ one has to do two steps: from 1
to the intermediate region, and then to ∞. At each step we decompose the correlator into
conformal blocks in the different regions and then use crossing symmetry to determine the
connection coefficients. The relevant formulae for the irregular state are reviewed in Appendix
B.1. We have

〈µ,Λ|Φ(z)V1(1)|∆0〉 =

∫
dαCµα

∑
θ=±

Cα1θ
α2,1α1

Cα
α1θα0

∣∣∣∣eµΛ
1F

(
−µ αα0 α1θ

α2,1

α1
; Λ, 1− z

)∣∣∣∣2 =

=

∫
dαCµα

∑
θ′=±

Cα
α2,1αθ′

Cαθ′
α1α0

∣∣∣∣z−∆2,1−∆1−∆0
1F

(
µ α

α2,1 αθ′
α1

α0
; Λz,

1

z

)∣∣∣∣2 .
(3.3.53)

8Actually, doing the Möbius transformation one gets −Λ but since the block depends only on µΛ and Λ2

except for the classical part, one can trade −Λ for −µ.
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We recognize this condition from the hypergeometric function (3.2.5). Therefore we can readily
solve it in terms of the hypergeometric connection coefficientsM and the connection formula
between 0 and the intermediate region is then

eµΛ
1F

(
−µ αα0 α1θ

α2,1

α1
; Λ, 1− z

)
=
∑

θ′=±Mθθ′(bα1, bα; bα0)z−∆2,1−∆1−∆0
1F

(
µ α

α2,1 αθ′
α1

α0
; Λz, 1

z

)
.

(3.3.54)
Diagrammatically:

−µ

α0 α2,1

α1

α α1θ

=
∑

θ′=±Mθθ′

µ

α2,1 α1

α0

α αθ′

.

(3.3.55)
If one decomposes the correlator into conformal blocks in the intermediate region and near ∞,
one obtains the crossing symmetry condition

〈µ,Λ|Φ(z)V1(1)|∆0〉 =

∫
dαCα

α1α0

∑
θ=±

CµαθC
αθ
α2,1α

∣∣∣∣z−∆2,1−∆1−∆0
1F

(
µ αθ

α2,1 α
α1

α0
; Λz,

1

z

)∣∣∣∣2 =

=

∫
dαCα

α1α0

∑
θ′=±

Cµθ′αB
µθ′
α2,1µ

∣∣∣∣1D(µ α2,1 µθ′ α
α1

α0
; Λ,

1

Λz

)∣∣∣∣2 .
(3.3.56)

This condition is analogous to the one we found for the Whittaker functions (3.2.21) so that
the connection formula between the intermediate region and ∞ reads

bθbαz−∆2,1−∆1−∆0
1F

(
µ αθ

α2,1 α
α1

α0
; Λz, 1

z

)
=
∑

θ′=± b
− 1

2
−θ′bµNθθ′(bα, bµ)1D

(
µ
α2,1 µθ′ α

α1

α0
; Λ, 1

Λz

)
(3.3.57)

with irregular connection coefficients as in (B.1.18):

Nθθ′(bα, bµ) =
Γ(1 + 2θbα)

Γ
(

1
2

+ θbα− θ′bµ
)eiπ( 1−θ′

2

)
( 1

2
−bµ+θbα) . (3.3.58)

In diagrams:

µ

α2,1 α1

α0

αθ α

=
∑

θ′=±Nθθ′
µ

α2,1 α1

α0

µθ′ α

.

(3.3.59)
Let us write explicitly the more interesting connection formula between 1 and ∞, which is
obtained by concatenating the two connection formulae above. Since the F block in the in-
termediate region has different arguments in formula (3.3.54) and (3.3.57), we need to rename
some of them. In the end we obtain the following connection formula from 1 directly to ∞:

eµΛ
1F

(
−µ αα0 α1θ1

α2,1

α1
; Λ, 1− z

)
=

=
∑

θ2,θ3=±

b−
1
2

+θ2bαθ2−θ3bµMθ1θ2(bα1, bα; bα0)N(−θ2)θ3(bαθ2 , bµ)1D

(
µ
α2,1 µθ3 αθ2

α1

α0
; Λ,

1

Λz

)
.

(3.3.60)
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Again, in diagrams this is represented by:

−µ

α0 α2,1

α1

α α1θ1

=
∑

θ2,θ3=±Mθ1θ2N(−θ2)θ3

µ

α2,1 α1

α0

µθ3 αθ2

,

(3.3.61)
where we have suppressed the arguments of the connection coefficients for brevity.

Large Λ blocks The conformal blocks considered up to now are expansions in Λ. One can
however play the same game using expansions in 1

Λ
. For example, for large Λ and for z ∼ 0, we

have

1D

(
µ
α1 µ′ α0θ

α2,1

α0
;

1

Λ
,Λz

)
=

µ

α1 α2,1

α0

µ′ α0θ

. (3.3.62)

One can compute it via OPE as in (B.1.1) or as a collision limit of a regular conformal block
as proposed in [106]:

1D

(
µ
α1 µ′ α0θ

α2,1

α0
;

1

Λ
,Λz

)
=e−(µ′−µ)ΛΛ∆0θ+2µ′(µ′−µ)z

bQ
2

+θbα0×

× lim
η→∞

(
1− η

Λ

)∆1−(µ′−µ)(η−µ′)
F̃

(
α1
η+µ

2

η−µ
2

+µ′
η−µ

2 α0θ
α2,1

α0
;
η

Λ
,
Λz

η

)
.

(3.3.63)
Similarly, we have a conformal block for large Λ and z ∼ 1, which as usual we can write in the
same form as the one for z ∼ 0 by doing a Möbius transformation:

eµΛ
1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
;

1

Λ
,Λ(1− z)

)
=
−µ

α0 α2,1

α1

µ′ − µ α1θ

=

=

µ

α1

α2,1

α0

α1θ

µ′

.

(3.3.64)
The first line of (3.3.64) is the diagrammatic representation of the conformal block, while the
second line is an equality of two a priori seemingly different conformal blocks, which can be
explicitly checked order by order . This is consistent with the fact that the corresponding DOZZ
factors are equal:

Bµ′−µ
−µα0

Cµ′−µ,α1θ
= Bµ′

µα1θ
Cµ′,α0 , (3.3.65)

as can easily be proven by using their explicit expressions given in Appendix A.2. The most
exotic block is the one for large Λ and large z, which by a slight abuse of notation we still
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denote by D:

1D

(
µ
α2,1 µθ

α1 µ′ α0;
1

Λ
,
1

z

)
=

µ

α2,1 α1

α0

µθ µ′

. (3.3.66)

This block is fully irregular in the sense that to calculate it, we have to perform two irregular
OPEs as indicated by the diagram. It is more convenient to calculate it as a collision limit of
a regular block:

1D

(
µ
α2,1 µθ

α1 µ′ α0;
1

Λ
,
1

z

)
= eθbΛz/2Λ∆2,1 (Λz)−θbµ+ b2

2 e−(µ′−µθ)ΛΛ∆0+∆1+2µ′(µ′−µθ)×

× lim
η→∞

(
1− η

Λz

)∆2,1−(µθ−µ)(η−µθ) (
1− η

Λ

)∆1−(µ′−µθ)(η−µ′)−(µ′−µθ)(µθ−µ)

F̃

(
α2,1
η+µ

2

η−µ
2

+µθ
α1 η−µ

2
+µ′

η−µ
2

α0
;
η

Λ
,
Λz

η

)
.

(3.3.67)
Having defined all the necessary conformal blocks we now derive their connection formulae. Let
us start by connecting z ∼ 1 with ∞. Expanding the correlator in these regions, we get the
crossing symmetry condition

〈µ,Λ|Φ(z)V1(1)|∆0〉 =

∫
dµ′
∑
θ=±

Bµ′−µ
−µα0

Cµ′−µ,α1θ
Cα1θ
α1α2,1

∣∣∣∣eµΛ
1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
;

1

Λ
,Λ(1− z)

)∣∣∣∣2 =

=

∫
dµ′

∑
θ′=±

Bµθ′
µα2,1

Bµ′

µθ′α1
Cµ′,α0

∣∣∣∣1D(µ α2,1 µθ′
α1 µ′ α0;

1

Λ
,
1

z

)∣∣∣∣2 .
(3.3.68)

Using the following remarkable identity, which can easily be proven using the explicit expression
of the structure functions given in Appendix A.2,

Bµθ′
µα2,1

Bµ′

µθ′α1
Cµ′α0 = Bµ′−µ

−µα0
B
µ′−µθ′
µ′−µ,α2,1

Cµ′−µθ′ ,α1 , (3.3.69)

we find that the above crossing symmetry condition (after relabelling the dummy variable
θ′ → −θ′) becomes:

〈µ,Λ|Φ(z)V1(1)|∆0〉 =

∫
dµ′Bµ′−µ

−µα0

∑
θ=±

Cµ′−µ,α1θ
Cα1θ
α1α2,1

∣∣∣∣eµΛ
1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
;

1

Λ
,Λ(1− z)

)∣∣∣∣2 =

=

∫
dµ′Bµ′−µ

−µα0

∑
θ′=±

B
µ′
θ′−µ

µ′−µ,α2,1
Cµ′

θ′−µ,α1

∣∣∣∣1D(µ α2,1 µ−θ′
α1 µ′ α0;

1

Λ
,
1

z

)∣∣∣∣2 .
(3.3.70)

We recognize this constraint from the Whittaker functions (3.2.24), and can readily write the
connection formula from 1 to ∞:

bθbα1eµΛ
1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
; 1

Λ
,Λ(1− z)

)
=
∑

θ′ b
− 1

2
+θ′b(µ′−µ)Nθ(−θ′)(bα1, bµ

′ − bµ)1D

(
µ
α2,1 µθ′

α1 µ′ α0; 1
Λ
, 1
z

)
,

(3.3.71)
where N are the connection coefficients for the Whittaker functions (3.2.24). Diagrammatically
this is clear:

µ

α1

α2,1

α0

α1θ

µ′

=
∑

θ′=±Nθ(−θ′)
µ

α2,1 α1

α0

µθ′ µ′

.

(3.3.72)
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To connect 0 and ∞ we expand the correlator in the relevant regions. By crossing symmetry
we have:

〈µ,Λ|V1(1)Φ(z)|∆0〉 =

∫
dµ′
∑
θ=±

Bµ′

µα1
Cµ′α0θ

Cα0θ
α2,1α0

∣∣∣∣1D(µ α1 µ′ α0θ
α2,1

α0
;

1

Λ
,Λz

)∣∣∣∣2 =

=

∫
dµ′

∑
θ′=±

Bµθ′
µα2,1

B
µ′
θ′

µθ′α1Cµ′
θ′ ,α0

∣∣∣∣1D(µ α2,1 µθ′
α1 µ′θ′ α0;

1

Λ
,
1

z

)∣∣∣∣2 ,
(3.3.73)

for later convenience we have labelled the intermediate channel in the second line by µ′θ′ instead
of µ′. By using an identity similar to (3.3.69):

Bµθ′
µα2,1

B
µ′
θ′

µθ′α1Cµ′
θ′ ,α0

= Bµ′

µα1
B
µ′
θ′

µ′α2,1
Cµ′

θ′α0
, (3.3.74)

the above crossing symmetry equation then becomes:

〈µ,Λ|V1(1)Φ(z)|∆0〉 =

∫
dµ′Bµ′

µα1

∑
θ=±

Cµ′α0θ
Cα0θ
α2,1α0

∣∣∣∣1D(µ α1 µ′ α0θ
α2,1

α0
;

1

Λ
,Λz

)∣∣∣∣2 =

=

∫
dµ′Bµ′

µα1

∑
θ′=±

B
µ′
θ′

µ′α2,1
Cµ′

θ′α0

∣∣∣∣1D(µ α2,1 µθ′
α1 µ′θ′ α0;

1

Λ
,
1

z

)∣∣∣∣2 .
(3.3.75)

We recognize this constraint from the Whittaker functions (3.2.21) and can readily write the
connection formula from 0 to ∞:

bθbα0
1D

(
µ
α1 µ′ α0θ

α2,1

α0
; 1

Λ
,Λz

)
=
∑

θ′=± b
− 1

2
−θ′bµ′Nθθ′(bα0, bµ

′)1D

(
µ
α2,1 µθ′

α1 µ′θ′ α0; 1
Λ
, 1
z

)
.

(3.3.76)
Combining (3.3.76) with the inverse of (3.3.71) we obtain the connection formula from 0 to 1:

bθ1bα0
1D

(
µ
α1 µ′ α0θ1

α2,1

α0
;

1

Λ
,Λz

)
=

=
∑

θ2,θ3=±

b−
1
2
−θ2bµ′Nθ1θ2(bα0, bµ

′)b
1
2
−θ2b(µ′θ2−µ)+θ3bα1N−1

(−θ2)θ3
(bµ′θ2 − bµ, bα1)eµΛ

1D

(
− µ α0 µ′θ2 − µ α1θ3

α2,1

α1
;

1

Λ
,Λ(1− z)

)
.

(3.3.77)
Diagrammatically:

µ

α1 α2,1

α0

µ′ α0θ1

=
∑

θ2,θ3=±Nθ1θ2N
−1
(−θ2)θ3

µ

α1

α2,1

α0

α1θ

µ′θ2

.

(3.3.78)
One might expect the existence of conformal blocks expanded in an intermediate region, as was
the case for small Λ. Indeed, in the case of large Λ one can define a block expanded in the
intermediate region 1

Λ
� z � 1. However, by the identity (3.3.74), this block is actually the

same as the block (3.3.66) corresponding to z ∼ ∞, in the sense that the analytic continuation
between the two is trivial. Similarly, one can define another intermediate block in the region
1
Λ
� 1− z � 1 which is also the same as (3.3.66) by virtue of the identity (3.3.69).
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Semiclassical limit

In the semiclassical limit b → 0 and αi, µ,Λ → ∞ such that ai = bαi, m = bµ, L = bΛ are
finite. We denote the quantities which are finite in the semiclassical limit by latin letters instead
of greek ones.

Small L blocks The conformal blocks in this limit are expected to exponentiate, and the
z-dependence becomes subleading: schematically they take the form

F(Λ, z) ∼ e
1
b2
F (L)+W (L,z)+O(b2) , (3.3.79)

and they diverge in this limit. The classical conformal block F (L) is related to the conformal
block F without the degenerate field insertion, i.e.

1F

(
µα

α1

α0
; Λ

)
= Λ∆e

1
b2

(F (L)+O(b2)) . (3.3.80)

Normalizing by this block, we obtain finite semiclassical conformal blocks. Consider for con-
creteness the block corresponding to the expansion for z ∼ 0. We define the corresponding
(finite) semiclassical conformal block by

1F
(
m a

a1 a0θ
a2,1

a0
;L, z

)
= lim

b→0

1F

(
µ α

α1 α0θ
α2,1

α0
; Λ, z

)
1F

(
µα

α1

α0
; Λ

) = e−
θ
2
∂a0F z

1
2

+θa0(1 +O(L, z)) .

(3.3.81)
The term exp− θ

2
∂a0F on the RHS of the above equation comes from the fact that the leading

behaviour of the numerator is exp b−2F (a0θ) while the denominator behaves as exp b−2F (a0).
The fact that the z-dependence is subleading means that to leading order, the Λ-derivative in the
BPZ equation (3.3.44) becomes z-independent, since we have Λ∂ΛF(Λ, z) ∼ b−2Λ∂ΛF (Λ)F(Λ, z).
Then the BPZ equation in the semiclassical limit reduces to an ODE. In particular, multiplying
(3.3.44) by b2, this semiclassical conformal block now satisfies the equation(

∂2
z +

u− 1
2

+ a2
0 + a2

1

z(z − 1)
+

1
4
− a2

1

(z − 1)2
+

1
4
− a2

0

z2
+
mL

z
− L2

4

)
1F
(
m a

a1 a0θ
a2,1

a0
;L, z

)
= 0 .

(3.3.82)
We have introduced

u = lim
b→0

b2Λ∂Λ log 1F

(
µα

α1

α0
; Λ

)
=

1

4
− a2 +O(L) (3.3.83)

Similarly, we define the semiclassical block for z ∼ 1 to be

1F
(
−m a

a0 a1θ
a2,1

a1
;L, 1− z

)
= lim

b→0

eµΛ
1F

(
−µ αα0 α1θ

α2,1

α1
; Λ, 1− z

)
1F

(
µα

α1

α0
; Λ

) =

= lim
b→0

1F

(
−µ αα0 α1θ

α2,1

α1
; Λ, 1− z

)
1F

(
−µαα0

α1
; Λ

) = e−
θ
2
∂a1F (1− z)

1
2

+θa1(1 +O(L, 1− z)) ,

(3.3.84)
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and in the deep irregular region:

1D
(
m
a2,1 mθ a

a1

a0
;L, 1

Lz

)
= limb→0 b

− 1
2
−θm

1D

(
µ
α2,1

µθ α
α1

α0
;Λ, 1

Λz

)
1F

µαα1

α0
;Λ

 = e−
θ
2
∂mF eθLz/2L−

1
2
−θmz−θm(1 +O(L, 1/Lz)) .

(3.3.85)
The explicit power of b is needed to combine with Λ to form L. All these blocks satisfy the
same equation (3.3.82). Note that in the connection formula (3.3.60) we have four different
conformal blocks on the right hand side. Since in the semiclassical limit the BPZ equation
becomes a second-order ODE, these four different blocks have to reduce to the two linearly
independent solutions near the irregular singular point. They are given by

1D

(
µ
α2,1 µθ α

α1

α0
; Λ,

1

Λz

)
= eθbΛz/2Λ∆2,1+∆ (Λz)−θbµ+ b2

2 e
1
b2
F (a)+W (a)+O(b2) , (3.3.86)

where we have suppressed the dependence of F and W on the other parameters. Instead, in
(3.3.60) we have

1D

(
µ
α2,1 µθ αθ′

α1

α0
; Λ,

1

Λz

)
= eθbΛz/2Λ∆2,1+∆θ′ (Λz)−θbµ+ b2

2 e
1
b2
F (aθ′ )+W (aθ′ )+O(b2) . (3.3.87)

Since we are taking the limit b→ 0, we can safely substitute W (aθ′)→ W (a). This is not true
for F (aθ′) however, since it multiplies a pole in b2. Instead, in the semiclassical limit we have

1D

(
µ
α2,1 µθ αθ′

α1

α0
; Λ,

1

Λz

)
∼ Λθ′ae−

θ′
2
∂aF (a)

1D

(
µ
α2,1 µθ α

α1

α0
; Λ,

1

Λz

)
, as b→ 0 ,

(3.3.88)
as in (3.3.34). Therefore, we can simplify the connection formula from 1 to ∞ (3.3.60) in the
semiclassical limit and state it as

1F
(
−m a

a0 a1θ
a2,1

a1
;L, 1− z

)
=
∑

θ′

(∑
σ=±Mθσ(a1, a; a0)N(−σ)θ′(a,m)Lσae−

σ
2
∂aF
)

1D
(
m
a2,1 mθ′ a

a1

a0
;L, 1

Lz

)
,

(3.3.89)
with connection coefficients

∑
σ=±Mθσ(a1, a; a0)N(−σ)θ′(a,m)Lσae−

σ
2
∂aF =

∑
σ=±

Γ(1−2σa)Γ(−2σa)Γ(1+2θa1)e
iπ

(
1−θ′

2

)
( 1

2−m−σa)Lσae−
σ
2 ∂aF

Γ( 1
2

+θa1−σa+a0)Γ( 1
2

+θa1−σa−a0)Γ( 1
2
−σa−θ′m)

.

(3.3.90)
Note that all the powers of b appearing in (3.3.60) have been absorbed to give finite quantities.9
The connection formula from 0 to 1 trivially reduces to the semiclassical one:

1F
(
m a

a1 a0θ
a2,1

a0
;L, z

)
=
∑
θ′=±

Mθθ′(a0, a1; a)1F
(
−m a

a0 a1θ′
a2,1

a1
;L, 1− z

)
. (3.3.91)

Large L blocks For the conformal blocks valid for large Λ, the story is analogous. Taking the
semiclassical limit, the conformal blocks are expected to exponentiate and the z-dependence
becomes subleading. Schematically we have

D(Λ−1, z) ∼ e
1
b2
FD(L−1)+WD(L−1,z)+O(b2) . (3.3.92)

9Note also that the Gamma functions in the denominator precisely correspond to the one-loop factors of
the three hypermultiplets of the corresponding AGT dual gauge theory.
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Here FD is the classical conformal block for large 10 Λ and is related to the conformal block
without the degenerate field insertion, i.e.

1D

(
µ
α1 µ′ α0;

1

Λ

)
= e−(µ′−µ)ΛΛ∆0+∆1+2µ′(µ′−µ)e

1
b2

(FD(L−1)+O(b2)) . (3.3.93)

We use this block as a normalization for large Λ. For z ∼ 0 we have

1D
(
m
a1 m′ a0θ

a2,1

a0
; 1
L
, Lz

)
= limb→0 b

θa0

1D

(
µ
α1

µ′ α0θ

α2,1

α0
; 1
Λ
,Λz

)
1D

µα1
µ′ α0; 1

Λ

 = Lθa0e−
θ
2
∂a0FDz

1
2

+θa0(1 +O(L−1, Lz)) .

(3.3.94)
This block and all the other large-L blocks defined in the following satisfy the same equation
(3.3.82) as the small-L blocks, with the substitution

u→ uD = lim
b→0

b2Λ∂Λ log 1D

(
µ
α1 µ′ α0;

1

Λ

)
. (3.3.95)

For z ∼ 1 we have the block

1D
(
−ma0 m′ −m a1θ

a2,1

a1
;

1

L
,L(1− z)

)
= lim

b→0
bθa1

eµΛ
1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
; 1

Λ
,Λ(1− z)

)
1D

(
µ
α1 µ′ α0; 1

Λ

) =

= lim
b→0

1D

(
− µ α0 µ′ − µ α1θ

α2,1

α1
; 1

Λ
,Λ(1− z)

)
1D

(
−µα0 µ′ − µα1; 1

Λ

) = Lθa1e−
θ
2
∂a1FD(1− z)

1
2

+θa1(1 +O(L−1, L(1− z))) ,

(3.3.96)
and for z ∼ ∞:

1D
(
m
a2,1 mθ

a1 m′ a0;
1

L
,
1

z

)
= lim

b→0
b−

1
2

+θ(m′−m)
1D

(
µ
α2,1 µθ

α1 µ′ α0; 1
Λ
, 1
z

)
1D

(
µ
α1 µ′ α0; 1

Λ

) =

= eθLz/2e−θL/2e−
θ
2
∂mFDL−

1
2

+θ(m′−m)z−θm(1 +O(L−1, z−1)) .
(3.3.97)

In the connection formula from 0 to 1 for large Λ (3.3.77), there appear four different conformal
blocks on the right hand side. In the semiclassical limit these four reduce to two, by the same
argument as for small Λ. Indeed we have

eµΛ
1D

(
− µ α0 µ′θ2 − µ α1θ3

α2,1

α1
;

1

Λ
,Λ(1− z)

)
= e−(µ′θ2

−µ)ΛΛ∆1θ3
+2µ′θ2

(µ′θ2
−µ)(1− z)

bQ
2

+θbα1e
1
b2
FD(µ′θ2

)+WD(µ′θ2
)

∼ eθ2L/2Λ−θ2(2m′−m)e−
θ2
2
∂m′FD(m′)eµΛ

1D

(
− µ α0 µ′ − µ α1θ3

α2,1

α1
;

1

Λ
,Λ(1− z)

)
, as b→ 0 .

(3.3.98)
The connection formula (3.3.77) from 0 to 1 in the semiclassical limit then becomes

1D
(
m
a1 m′ a0θ

a2,1

a0
;

1

L
,Lz

)
=

=
∑
θ′=±

(∑
σ=±

Nθσ(a0,m
′)N−1

(−σ)θ′(m
′ −m, a1)e

σ
2
LL−σ(2m′−m)e−

σ
2
∂m′FD(m′)

)
1D
(
−ma0 m′ −m a1θ′

a2,1

a1
;

1

L
,L(1− z)

)
,

(3.3.99)
10As the notation suggests, it is nothing else but the dual prepotential of the gauge theory.
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where explicitly the connection coefficients read:∑
σ=±

Nθσ(a0,m
′)N−1

(−σ)θ′(m
′ −m, a1)e

σ
2
LL−σ(2m′−m)e−

σ
2
∂m′FD(m′) =

=
∑
σ=±

Γ(1 + 2θa0)Γ(−2θ′a1)e
σ
2
LL−σ(2m′−m)e−

σ
2
∂m′FD(m′)eiπ(

1−σ
2 )(θa0−θ′a1−2m′+m)

Γ
(

1
2

+ θa0 − σm′
)

Γ
(

1
2
− θ′a1 − σ(m′ −m)

) .

(3.3.100)

Again, all the spurious powers of b and Λ have beautifully recombined to give the finite com-
bination L.
The connection formula from 1 to ∞ (3.3.71) on the other hand becomes

1D
(
−ma0 m′ −m a1θ

a2,1

a1
; 1
L
, L(1− z)

)
=
∑

θ′=±Nθ(−θ′)(a1,m
′ −m)1D

(
m
a2,1 mθ′

a1 m′ a0; 1
L
, 1
z

)
,

(3.3.101)
where N is:

Nθ(−θ′)(a1,m
′ −m, ) =

Γ(1 + 2θa1)

Γ
(

1
2

+ θa1 + θ′(m′ −m)
)eiπ( 1+θ′

2

)
( 1

2
−(m′−m)+θa1) . (3.3.102)

3.3.3 Reduced confluent conformal blocks

General case

Consider the correlation function

〈Λ2|V1(1)Φ(z)|∆0〉 , (3.3.103)

which solves the BPZ equation(
b−2∂2

z −
(

1

z
+

1

z − 1

)
∂z +

Λ2∂Λ2 −∆2,1 −∆1 −∆0

z(z − 1)
+

∆1

(z − 1)2
+

∆0

z2
− Λ2

4z

)
〈Λ2|Φ(z)V1(1)|∆0〉 = 0 .

(3.3.104)
We can decompose it into irregular conformal blocks in different ways. The blocks corresponding
to the expansion of z around a regular singular point can be given as a further decoupling limit
of the confluent conformal blocks. For the blocks corresponding to the expansion of z around
the irregular singular point of rank 1/2, no closed form expression as (3.3.49) is presently known
to us. The block for z ∼ 0 can be defined as

1
2
F

(
α
α1 α0θ

α2,1

α0
; Λ2, z

)
= lim

η→∞
(4η)∆

1F

(
−η αα1 α0θ

α2,1

α0
;
Λ2

4η
, z

)
. (3.3.105)

We multiply by the factor of (4η)∆ to take care of the leading divergence in the limit. In the
diagrammatic notation of section 3.2.3, we represent it by

1
2
F

(
α
α1 α0θ

α2,1

α0
; Λ2, z

)
=

α1 α2,1

α0

α α0θ

. (3.3.106)

As indicated by the diagram, all OPEs are regular in this case. The wiggly line represents the
rank 1/2 irregular state, and the dot the pairing with a Verma module. The block for z ∼ 1 is
then simply

eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)
=

α0 α2,1

α1

α α1θ

. (3.3.107)
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The overall phase compensates the sign in e−iπΛ2 such that the classical part is still Λ2∆. In
the intermediate region where 1� z � 1

Λ2 the corresponding block is

z−∆2,1−∆1−∆0
1
2
F

(
αθ
α2,1 α

α1

α0
; Λ2z,

1

z

)
=

α2,1 α1

α0

αθ α

. (3.3.108)

Instead, in the deep irregular region, where z � 1
Λ2 � 1, a decoupling limit of the form (3.3.49)

does not work. Of course one can still calculate this block by solving the BPZ equation itera-
tively with a series Ansatz, or directly using the Ward identities determining the descendants of
the OPE with the irregular state (see Appendix B.1). In any case we will denote the conformal
block in this region by

1
2
E(θ)

(
α2,1 α

α1

α0
; Λ2,

1

Λ
√
z

)
∼ (Λ2)∆2,1+∆(Λ

√
z)

1
2

+b2eθbΛ
√
z

[
1 +O

(
Λ2,

1

Λ
√
z

)]
. (3.3.109)

The ∼ refers to the fact that this expansion is asymptotic. In diagrams we represent this block
by

1
2
E(θ)

(
α2,1 α

α1

α0
; Λ2,

1

Λ
√
z

)
=

α2,1 α1

α0

θ α

. (3.3.110)

The solution of the connection problems goes in the same way as for the (unreduced) confluent
Heun equation (section 3.3.2). In particular the connection problem between 0 and 1 works in
the same way as for the general Heun equation. We have

1
2
F

(
α
α1 α0θ

α2,1

α0
; Λ2, z

)
=
∑
θ′=±

Mθθ′(bα0, bα1; bα)eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)
.

(3.3.111)
To solve the connection problem between 1 and ∞ one has to do two steps: from 1 to the
intermediate region, and then to ∞. In each step we decompose the correlator into conformal
blocks in the different regions and then use crossing symmetry to determine the connection
coefficients. The relevant formulae for the rank 1/2 irregular state are reviewed in Appendix
B.2. We have

〈Λ2|Φ(z)V1(1)|∆0〉 =

∫
dαCα

∑
θ=±

Cα1θ
α2,1α1

Cα
α1θα0

∣∣∣∣eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)∣∣∣∣2 =

=

∫
dαCα

∑
θ′=±

Cα
α2,1αθ′

Cαθ′
α1α0

∣∣∣∣z−∆2,1−∆1−∆0
1
2
F

(
α
α2,1 αθ′

α1

α0
; Λ2z,

1

z

)∣∣∣∣2 .
(3.3.112)

This is precisely the same condition as for the hypergeometric functions (3.2.5). The connection
formula between 1 and the intermediate region is then

eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)
=
∑

θ′=±Mθθ′(bα1, bα; bα0)z−∆2,1−∆1−∆0 1
2
F

(
α
α2,1 αθ′

α1

α0
; Λ2z, 1

z

)
.

(3.3.113)
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Diagrammatically:

α0 α2,1

α1

α α1θ

=
∑
θ′=±

Mθθ′

α2,1 α1

α0

α αθ′

.

(3.3.114)
Now we decompose the correlator into conformal blocks in the intermediate region and near
∞, obtaining the crossing symmetry condition

〈Λ2|Φ(z)V1(1)|∆0〉 =

∫
dαCα

α1,α0

∑
θ=±

CαθC
αθ
α2,1α

∣∣∣∣z−∆2,1−∆1−∆0
1
2
F

(
αθ
α2,1 α

α1

α0
; Λ2z,

1

z

)∣∣∣∣2 =

=

∫
dαCα

α1α0

∑
θ′=±

CαBα2,1

∣∣∣∣ 1
2
E(θ′)

(
α2,1 α

α1

α0
; Λ2,

1

Λ
√
z

)∣∣∣∣2 .
(3.3.115)

We recognize this condition from the Bessel functions (3.2.36). We then immediately find the
connection formula between the intermediate region and ∞:

b2θbαz−∆2,1−∆1−∆0
1
2
F

(
αθ
α2,1 α

α1

α0
; Λ2z,

1

z

)
=
∑
θ′=±

b−
1
2Qθθ′(bα) 1

2
E(θ′)

(
α2,1 α

α1

α0
; Λ2,

1

Λ
√
z

)
(3.3.116)

with irregular connection coefficients as in (B.2.15):

Qθθ′(bα) =
22θbα

√
2π

Γ(1 + 2θbα)e
iπ
(

1−θ′
2

)
( 1

2
+2θbα) . (3.3.117)

In diagrams:

α2,1 α1

α0

αθ α

=
∑
θ′=±

Qθθ′

α2,1 α1

α0

θ′ α

.

(3.3.118)
Let us write explicitly the more interesting connection formulae between 1 and ∞, which
is obtained by concatenating the two connection formulae above. Since the F block in the
intermediate region has different arguments in formula (3.3.113) and (3.3.116), we need to
rename some arguments. In the end we obtain the following connection formula from 1 directly
to ∞:

eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ1

α2,1

α1
; e−iπΛ2, 1− z

)
=

=
∑

θ2,θ3=±

Mθ1θ2(bα1, bα; bα0)Q(−θ2)θ3(bαθ2)b−
1
2

+θ2bαθ2 1
2
E(θ3)

(
α2,1 αθ2

α1

α0
; Λ2,

1

Λ
√
z

)
.

(3.3.119)

Diagrammatically we have

α0 α2,1

α1

α α1θ1

=
∑

θ2,θ3=±Mθ1θ2Q(−θ2)θ3

α2,1 α1

α0

θ3
αθ2

,

(3.3.120)
where we have suppressed the arguments of the connection coefficients for brevity.
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Semiclassical limit

The story works the same way here as for the confluent case. In the semiclassical limit the BPZ
equation becomes(

∂2
z +

u− 1
2

+ a2
1 + a2

0

z(z − 1)
+

1
4
− a2

1

(z − 1)2
+

1
4
− a2

0

z2
− L2

4z

)
1
2
F(z) = 0 , (3.3.121)

for any semiclassical block. Here u is given by

u = lim
b→0

b2Λ2∂Λ2 log 1
2
F

(
α
α1

α0
; Λ2

)
=

1

4
− a2 +O(L2) (3.3.122)

by the same argument as before. The finite semiclassical conformal blocks are defined by
normalizing by the same block without the degenerate field insertion, i.e. the semiclassical
block for z ∼ 0 is

1
2
F
(
a
a1 a0θ

a2,1

a0
;L2, z

)
= lim

b→0

1
2
F

(
α
α1 α0θ

α2,1

α0
; Λ2, z

)
1
2
F

(
α
α0

α1
; Λ2

) = e−
θ
2
∂a0F z

1
2

+θa0(1 +O(L2, z)) .

(3.3.123)

Here F = limb→0 b
2 log

[
Λ−2∆

1
2
F

(
α
α1

α0
; Λ2

)]
.

1
2
F
(
a
a0 a1θ

a2,1

a1
;−L2, 1− z

)
= lim

b→0

eiπ∆e
Λ2

4 1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)
1
2
F

(
α
α1

α0
; Λ2

) =

= lim
b→0

1
2
F

(
α
α0 α1θ

α2,1

α1
; e−iπΛ2, 1− z

)
1
2
F

(
α
α0

α1
; e−iπΛ2

) = e−
θ
2
∂a1F (1− z)

1
2

+θa1(1 +O(L2, 1− z)) .

(3.3.124)

In the deep irregular region we define the semiclassical block as

1
2
E (θ)

(
a2,1 a

a1

a0
;L2, 1

L
√
z

)
= limb→0 b

− 1
2

1
2
E(θ)

(
α2,1 α

α1

α0
;Λ2, 1

Λ
√
z

)
1
2
F

µαα1

α0
;Λ2

 = (L
√
z)−

1
2 eθL

√
z(1 +O(L2, 1

L
√
z
)) .

(3.3.125)
All these blocks satisfy the same equation (3.3.121). As for the confluent case, in the connection
formula between 1 and ∞ we have four different E blocks appearing, which should reduce to
two in the semiclassical limit. Indeed, we have

1
2
E(θ)

(
α2,1 αθ′

α1

α0
; Λ2,

1

Λz

)
∼ (Λ2)θ

′ae−
θ′
2
∂aF

1
2
E(θ)

(
α2,1 α

α1

α0
; Λ2,

1

Λz

)
, as b→ 0 , (3.3.126)

as in (3.3.34). Now that we have defined the semiclassical conformal blocks, we state the
connection formulae. The connection formula from 0 to 1 (3.3.111) reduces trivially in the
semiclassical limit to

1
2
F
(
a
a1 a0θ

a2,1

a0
;L2, z

)
=
∑
θ′=±

Mθθ′(a0, a1; a) 1
2
F
(
a
a0 a1θ

a2,1

a1
;−L2, 1− z

)
. (3.3.127)
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The connection formula from 1 to ∞ (3.3.119) becomes

1
2
F
(
a
a0 a1θ

a2,1

a1
;−L2, 1− z

)
=
∑

θ′

(∑
σ=±Mθσ(a1, a; a0)Q(−σ)θ′(a)L2σae−

σ
2
∂aF
)

1
2
E (θ′)

(
a2,1 a

a1

a0
;L2, 1

L
√
z

)
,

(3.3.128)
with connection coefficients11∑

σ=±

Mθσ(a1, a; a0)Q(−σ)θ′(a)L2σae−
σ
2
∂aF =

=
∑
σ=±

Γ(1− 2σa)Γ(−2σa)Γ(1 + 2θa1)2−2σaL2σae−
σ
2
∂aF e

iπ
(

1−θ′
2

)
( 1

2
−2σa)

√
2πΓ

(
1
2

+ θa1 − σa+ a0

)
Γ
(

1
2

+ θa1 − σa− a0

) .

(3.3.129)

3.3.4 Doubly confluent conformal blocks

General case

Via a further collision limit we reach a correlator that solves the BPZ equation(
b−2∂2

z −
1

z
∂z +

µ1Λ1

z
− Λ2

1

4
+

Λ2∂Λ2

z2
+
µ2Λ2

z3
− Λ2

2

4z4

)
〈µ1,Λ1|Φ(z)|µ2,Λ2〉 = 0 . (3.3.130)

This correlator can be expanded in the intermediate region Λ2 � z � Λ−1
1 and near the two

irregular singularities, that is either z � Λ−1
1 � 1 or z � Λ2 � 1. Note that in (3.3.130) one of

the three parameters Λ1,Λ2, z is redundant. Indeed the conformal blocks will only depend on
two ratios. The conformal blocks in these regions can easily be computed as a collision limit.
Explicitly, in the intermediate region Λ2 � z � Λ−1

1

1F1

(
µ1 αθ

α2,1α µ2; Λ1z,
Λ2

z

)
= Λ∆θ

1 Λ∆
2 z

bQ
2

+θbα lim
η→∞ 1F̃

(
µ1 αθ

α2,1 α
η−µ2

2
η+µ2

2

; Λ1z,
Λ2

zη

)
.

(3.3.131)
This conformal block is the result of the projection of the Whittaker module |µ2,Λ2〉 on a
Verma module ∆ and of 〈µ1,Λ1| on ∆θ. We represent this block by the diagram

1F1

(
µ1 αθ

α2,1α µ2; Λ1z,
Λ2

z

)
=

µ1

α2,1

µ2

αθ α

. (3.3.132)

The expansion near the irregular singularity at infinity can be obtained by colliding in (3.3.49)
the insertions far from the Whittaker state in the confluent conformal block. This gives

1D1

(
µ1
α2,1 µ1θ α µ2; Λ1Λ2,

1
Λ1z

)
= eθbΛ1z/2Λ

∆+∆2,1

1 Λ∆
2 (Λ1z)−θbµ1+ b2

2 limη→∞ 1D̃

(
µ1
α2,1 µ1θ α

η−µ2

2
η+µ2

2

; Λ1Λ2

η
, 1

Λ1z

)
.

(3.3.133)
We represent this block diagrammatically by

1D1

(
µ1
α2,1 µ1θ α µ2; Λ1Λ2,

1

Λ1z

)
=

µ1

α2,1

µ2

µ1θ α

. (3.3.134)

11Note that the Gamma functions in the denominator precisely correspond to the one-loop factors of the two
hypermultiplets of the corresponding AGT dual gauge theory.
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Finally, the expansion near the irregular singularity at zero is easily obtained from (3.3.133) by
exchanging Λ1 and Λ2 and sending z → 1/z, up to a Jacobian. The corresponding conformal
block is

z−2∆2,1
1D1

(
µ2
α2,1 µ2θ α µ1; Λ1Λ2,

z

Λ2

)
=

µ1

α2,1

µ2

α µ2θ

.

(3.3.135)
Expanding now the correlator first near 0 and then in the intermediate region, crossing sym-
metry implies

〈µ1,Λ1|Φ(z)|µ2,Λ2〉 =

∫
dαG−1

α Cµ1αG
−1
α

∑
θ=±

Bµ2θ
α2,1,µ2

Cµ2θα

∣∣∣∣z−2∆2,1
1D1

(
µ2
α2,1 µ2θ α µ1; Λ1Λ2,

z

Λ2

)∣∣∣∣2 =

=

∫
dαG−1

α Cµ1α

∑
θ′=±

Cαθ′
α2,1α

Cµ2αθ′

∣∣∣∣1F1

(
µ1 α

α2,1αθ′ µ2; Λ1z,
Λ2

z

)∣∣∣∣2 .
(3.3.136)

We recognize this condition from (3.2.21), and we can readily write down the solution to the
connection problem:

bθbα1F1

(
µ1 α

α2,1αθ µ2; Λ1z,
Λ2

z

)
=
∑

θ′=± b
− 1

2
−θ′bµ2Nθθ′(bα, bµ2)z−2∆2,1

1D1

(
µ2
α2,1 µ2θ′ α µ1; Λ1Λ2,

z
Λ2

)
.

(3.3.137)
In diagrams:

µ1

α2,1

µ2

α αθ

=
∑

θ′=±Nθθ′
µ1

α2,1

µ2

α µ2θ′

.

(3.3.138)
A similar argument works for the connection between the intermediate region and infinity. We
obtain

bθbα1F1

(
µ1 αθ

α2,1α µ2; Λ1z,
Λ2

z

)
=
∑

θ′=± b
− 1

2
−θ′bµ1Nθθ′(bα, bµ1)1D1

(
µ1
α2,1 µ1θ′ α µ2; Λ1Λ2,

1
Λ1z

)
.

(3.3.139)
Or, diagrammatically:

µ1

α2,1

µ2

αθ α

=
∑

θ′=±Nθθ′
µ1

α2,1

µ2

µ1θ′ α

.

(3.3.140)
Concatenating the previous connection formulae we can connect 0 directly with∞ as follows

b−
1
2
−θ1bµ2z−2∆2,1

1D1

(
µ2
α2,1 µ2θ1 α µ1; Λ1Λ2,

z

Λ2

)
=

=
∑

θ2,θ3=±

bθ2bαN−1
θ1θ2

(bµ2, bα)b−
1
2

+θ2bα−θ′bµ1N(−θ2)θ3(bαθ2 , bµ1)1D1

(
µ1
α2,1 µ1θ3 αθ2 µ2; Λ1Λ2,

1

Λ1z

)
.

(3.3.141)
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In diagrams:

µ1

α2,1

µ2

α µ2θ1

=
∑

θ2,θ3=±N
−1
θ1θ2
N(−θ2)θ3

µ1

α2,1

µ2

µ1θ3 αθ2

.

(3.3.142)

Semiclassical limit

Let us now consider the semiclassical limit of the doubly confluent conformal blocks. Once
again, the divergence as b→ 0 is expected to exponentiate, that is

z−2∆2,1
1D1

(
µ2
α2,1 µ2θ α µ1; Λ1Λ2,

z
Λ2

)
= z−2∆2,1e

θbΛ2
2z Λ

∆+∆2,1

2 Λ∆
1

(
Λ2

z

)−θbµ2+ b2

2 exp
(
b−2F (L1L2) +W

(
L1L2, zL

−1
2

))
,

(3.3.143)
where F is the classical conformal block defined by

1F1 (µ1 α µ2,Λ1Λ2) = (Λ1Λ2)∆ exp
(
b−2F +O(b0)

)
, (3.3.144)

and the 1F1 block is given by

〈µ1,Λ1|µ2,Λ2〉 =

∫
dαCµ1αCµ2α |1F1 (µ1 α µ2,Λ1Λ2)|2 . (3.3.145)

We define the semiclassical block near zero to be

z 1D1

(
m2

a2,1 m2θ a m1;L1L2,
z

L2

)
= lim

b→0
b−

1
2
−θbµ2+ b2

2 z−2∆2,1

1D1

(
µ2
α2,1 µ2θ α µ1; Λ1Λ2,

z
Λ2

)
1F1 (µ1 α µ2,Λ1Λ2)

,

(3.3.146)
The semiclassical blocks satisfy the equation(

∂2
z +

m1L1

z
− L2

1

4
+
u

z2
+
m2L2

z3
− L2

2

4

1

z4

)
z1D1

(
m2

a2,1 m2θ a m1;L1L2,
z

L2

)
= 0 ,

(3.3.147)
with the u parameter defined as usual to be the leftover of the Λ2 derivative, that is

u =
1

4
− a2 + L2∂L2F (L1L2) . (3.3.148)

Similarly, the semiclassical block near the irregular singularity at infinity is defined to be

1D1

(
m1

a2,1 m1θ a m2;L1L2,
1

L1z

)
= lim

b→0
b−

1
2
−θbµ1+ b2

2

1D1

(
µ1
α2,1 µ1θ α µ2; Λ1Λ2,

1
Λ1z

)
1F1 (µ1 α µ2,Λ1Λ2)

,

(3.3.149)
and satisfies the same equation (3.3.147). In equation (3.3.141) 4 different blocks near infinity
appear in the RHS. However they collapse to two of them in the semiclassical limit as in the
previous cases. That is,

1D1

(
µ1
α2,1 µ1θ αθ′ µ2; Λ1Λ2,

1
Λ1z

)
∼ (Λ1Λ2)θ

′a e−
θ′
2
∂aF

1D1

(
µ1
α2,1 µ1θ α µ2; Λ1Λ2,

1
Λ1z

)
, as b→ 0 ,

(3.3.150)
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as in (3.3.34). Finally, the connection formula (3.3.141) in the semiclassical limit becomes

z 1D1

(
m2

a2,1 m2θ a m1;L1L2,
z

L2

)
=

=
∑
θ′

(∑
σ=±

N−1
θσ (m2, a)N(−σ)θ′(a,m1) (L1L2)σa e−

σ
2
∂aF

)
1D1

(
m1

a2,1 m1θ′ a m2;L1L2,
1

L1z

)
,

(3.3.151)
where explicitly the connection coefficients read∑

σ=±

N−1
θσ (m2, a)N(−σ)θ′(a,m1) (L1L2)σa e−

σ
2
∂aF =

=
∑
σ=±

Γ(1− 2σa)Γ(−2σa) (L1L2)σa e−
σ
2
∂aF

Γ
(

1
2

+ θm2 − σa
)

Γ
(

1
2
− θ′m1 − σa

)eiπ( 1+θ
2 )(− 1

2
−m2−σa)e

iπ
(

1−θ′
2

)
( 1

2
−m1−σa) ,

(3.3.152)

3.3.5 Reduced doubly confluent conformal blocks

General case

Consider the correlation function

〈µ,Λ1|Φ(z)|Λ2
2〉 , (3.3.153)

which solves the BPZ equation(
b−2∂2

z −
1

z
∂z +

µΛ1

z
− Λ2

1

4
+

Λ2
2∂Λ2

2

z2
− Λ2

2

4z3

)
〈µ,Λ1|Φ(z)|Λ2

2〉 = 0 . (3.3.154)

One of the parameters among Λ1,Λ2, z is redundant and can be set to an arbitrary value via a
rescaling. We keep them all generic for convenience. We have three different conformal blocks,
corresponding to the expansion of z near the two irregular singular points, and for z in the
intermediate region. The block for z ∼ ∞ is given by the decoupling limit of the corresponding
doubly confluent block (3.3.133):

1D 1
2

(
µ
α2,1 µθ α ; Λ1Λ2

2,
1

Λ1z

)
= eθbΛ1z/2Λ

∆+∆2,1

1 (Λ2
2)∆ (Λ1z)−θbµ+ b2

2 limη→∞ 1D̃1

(
µ
α2,1 µθ α η;−Λ1Λ2

2

4η
, 1

Λ1z

)
.

(3.3.155)
Equivalently, this block can be computed by doing the OPE 〈µ,Λ1|Φ(z), projecting the result
onto the Verma module ∆α and contracting the result with |Λ2

2〉. We denote it diagrammatically
by

1D 1
2

(
µ
α2,1 µθ α ; Λ1Λ2

2,
1

Λ1z

)
=

µ

α2,1

µθ α

. (3.3.156)

Also for the intermediate region Λ2
2 � z � 1

Λ1
we have a closed form expression, given by

1F 1
2

(
µ αθ

α2,1 α ; Λ1z,
Λ2

2

z

)
= Λ∆θ

1 (Λ2
2)∆z

bQ
2

+θbα lim
η→∞ 1F̃1

(
µ αθ

α2,1 α η; Λ1z,−
Λ2

2

4ηz

)
.

(3.3.157)

56



This conformal block can also be computed directly by projecting |Λ2
2〉 onto the Verma module

∆, then doing the OPE of Φ(z) term by term with the resulting expansion and then contracting
with 〈µ,Λ1|. In diagrams

1F 1
2

(
µ αθ

α2,1 α ; Λ1z,
Λ2

2

z

)
=

µ

α2,1

αθ α

. (3.3.158)

For the expansion around the irregular singular point of half rank no explicit, closed form
expression is known to us. In any case one can calculate the expansion iteratively via other
methods as for (3.3.109). We denote the corresponding conformal block in this region, where
z � Λ2

2 and Λ1Λ2
2 � 1 by

1E
(θ)
1
2

(
µαα2,1 ; Λ1Λ2

2,

√
z

Λ2

)
∼ eθbΛ2/

√
z

(√
z

Λ2

)− 1
2
−b2

z−2∆2,1Λ∆
1 (Λ2

2)∆2,1+∆

[
1 +O

(√
z

Λ2

,Λ1Λ2
2

)]
.

(3.3.159)
Diagrammatically,

1E
(θ)
1
2

(
µαα2,1 ; Λ1Λ2

2,

√
z

Λ2

)
=

µ

α2,1

α θ

. (3.3.160)

To connect 0 with the intermediate region we decompose

〈µ,Λ1|Φ(z)|Λ2
2〉 =

∫
dαCµαG

−1
α

∑
θ=±

CαBα2,1

∣∣∣∣1E(θ)
1
2

(
µαα2,1 ; Λ1Λ2

2,

√
z

Λ2

)∣∣∣∣2 =

=

∫
dαCµαG

−1
α

∑
θ′=±

Cαθ′C
αθ′
α2,1,α

∣∣∣∣1F 1
2

(
µ α

α2,1 αθ′ ; Λ1z,
Λ2

2

z

)∣∣∣∣2 .
(3.3.161)

We recognize this constraint from (3.2.36). Its solution is

b−
1
2 1E

(θ)
1
2

(
µαα2,1 ; Λ1Λ2

2,

√
z

Λ2

)
=
∑
θ′=±

b2θ′bαQ−1
θθ′(bα)1F 1

2

(
µ α

α2,1 αθ′ ; Λ1z,
Λ2

2

z

)
. (3.3.162)

In diagrams we write

µ

α2,1

α θ

=
∑
θ′=±

Q−1
θθ′

µ

α2,1

α αθ′

.

(3.3.163)
Instead, to connect from the intermediate region to ∞ we decompose

〈µ,Λ1|Φ(z)|Λ2
2〉 =

∫
dαCαG

−1
α

∑
θ=±

CµαθC
αθ
α2,1α

∣∣∣∣1F 1
2

(
µ αθ

α2,1 α ; Λ1z,
Λ2

2

z

)∣∣∣∣2 =

=

∫
dαCαG

−1
α

∑
θ′=±

Cµθ′αB
µθ′
α2,1µ

∣∣∣∣1D 1
2

(
µ
α2,1 µθ′ α ; Λ1Λ2

2,
1

Λ1z

)∣∣∣∣2 .
(3.3.164)
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This is just the same constraint as for the Whittaker functions (3.2.21). The solution is

bθbα1F 1
2

(
µ αθ

α2,1 α ; Λ1z,
Λ2

2

z

)
=
∑
θ′=±

b−
1
2
−θ′bµNθθ′(bα, bµ)1D 1

2

(
µ
α2,1 µθ′ α ; Λ1Λ2

2,
1

Λ1z

)
.

(3.3.165)
Diagrammatically

µ

α2,1

αθ α

=
∑
θ′=±

Nθθ′
µ

α2,1

µθ′ α

(3.3.166)
To connect from 0 to ∞ we just need to concatenate the two connection formulae above to
obtain

b−
1
2 1E

(θ1)
1
2

(
µαα2,1 ; Λ1Λ2

2,
√
z

Λ2

)
=
∑

θ2,θ3=± b
2θ2bαQ−1

θ1θ2
(bα)b−

1
2

+θ2bα−θ3bµN(−θ2)θ3(bαθ2 , bµ)1D 1
2

(
µ
α2,1 µθ3 αθ2 ; Λ1Λ2

2,
1

Λ1z

)
.

(3.3.167)
In diagrams

µ

α2,1

α θ1

=
∑

θ2,θ3=±Q
−1
θ1θ2
N(−θ2)θ3

µ

α2,1

µθ3 αθ2

.

(3.3.168)

Semiclassical limit

The BPZ equation in this limit becomes(
∂2
z −

L2
1

4
+
mL1

z
+
u

z2
− L2

2

4z3

)
1F 1

2
= 0 . (3.3.169)

for any semiclassical block. Here u is given by

u = lim
b→0

b2Λ2
2∂Λ2

2
log 1F 1

2

(
µα; Λ1Λ2

2

)
=

1

4
− a2 +O(L1L

2
2) , (3.3.170)

where 1F 1
2

(µα; Λ1Λ2
2) is the conformal block corresponding to 〈µ,Λ1|Λ2

2〉 with intermediate
momentum α. The finite semiclassical conformal blocks are defined as before by normalizing
by the same block without the degenerate field insertion, i.e. for z ∼ 0

1E (θ)
1
2

(
maa2,1 ;L1L

2
2,
√
z

L2

)
= limb→0 b

− 1
2

1E
(θ)
1
2

(
µαα2,1 ;Λ1Λ2

2,
√
z

Λ2

)
1F 1

2
(µα;Λ1Λ2

2)
∼ eθL2/

√
zL
− 1

2
2 z

3
4 (1 +O(L1L

2
2,
√
z/L2))

(3.3.171)
For z ∼ ∞ instead we have

1D 1
2

(
m
a2,1 mθ a ;L1L

2
2,

1

L1z

)
= lim

b→0
b−

1
2
−θm

1D 1
2

(
µ
α2,1 µθ α ; Λ1Λ2

2,
1

Λ1z

)
1F 1

2
(µα; Λ1Λ2

2)
∼

∼ e−
θ
2
∂mF eθL1z/2L

− 1
2
−θm

1 z−θm(1 +O(L1L
2
2, 1/L1z)) .

(3.3.172)
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Here
F = lim

b→0
b2 log

[
(Λ1Λ2

2)−∆
1F 1

2

(
µα; Λ1Λ2

2

)]
. (3.3.173)

Both these blocks satisfy the same BPZ equation (3.3.169). Analogously to the previous conflu-
ences, in the connection formula between 0 and ∞ we have four different D blocks appearing,
which should reduce to two in the semiclassical limit. Indeed, we have

1D 1
2

(
µ
α2,1 µθ αθ′ ; Λ1Λ2

2,
1

Λ1z

)
∼
(
Λ1Λ2

2

)θ′a
e−

θ′
2
∂aF

1D 1
2

(
µ
α2,1 µθ α ; Λ1Λ2

2,
1

Λ1z

)
, as b→ 0 ,

(3.3.174)
as in (3.3.34). Now that we have defined the semiclassical conformal blocks, we state the
connection formula. (3.3.167) in the semiclassical limit becomes

1E (θ)
1
2

(
maa2,1 ;L1L

2
2,
√
z

L2

)
=
∑

θ′

(∑
σ=±Q

−1
θσ (a)N(−σ)θ′(a,m) (L1L

2
2)
σa
e−

σ
2
∂aF
)

1D 1
2

(
m
a2,1 mθ′ a ;L1L

2
2,

1
L1z

)
.

(3.3.175)
With connection coefficients12∑

σ=±

Q−1
θσ (a)N(−σ)θ′(a,m)

(
L1L

2
2

)σa
e−

σ
2
∂aF =

=
1√
2π

∑
σ=±

Γ(1− 2σa)Γ(−2σa)

Γ
(

1
2
− θ′m− σa

) (
L1L

2
2

4

)σa
e−

σ
2
∂aF e−iπ(

1+θ
2 )( 1

2
+2σa)e

iπ
(

1−θ′
2

)
( 1

2
−m−σa) .

(3.3.176)
Note that the factors of b appearing in (3.3.167) precisely combine with all the factors of Λ1,Λ2

to give the finite L1, L2.

3.3.6 Doubly reduced doubly confluent conformal blocks

General case

Decoupling the last mass we land on the last correlator of our interest, which solves the BPZ
equation (

b−2∂2
z −

1

z
∂z −

Λ2
1

4

1

z
+

Λ2
2∂Λ2

2

z2
− Λ2

2

4

1

z3

)
〈Λ2

1|Φ(z)|Λ2
2〉 = 0 , (3.3.177)

Again, one of the parameters among Λ1, z,Λ2 is redundant and can be set to an arbitrary value
via a rescaling. We keep them generic for convenience. We can decompose the above correlator
into conformal blocks in three different regions, that is for z � Λ2

2 � 1, z � Λ−2
1 � 1, or for

z in the intermediate region Λ2
2 � z � Λ−2

1 . The conformal block in the intermediate region is
again a block that can be expressed as a collision limit

1
2
F 1

2

(
αθ α2,1 α ; Λ2

1z,
Λ2

2

z

)
= (Λ2

1)∆θ(Λ2
2)∆z

bQ
2

+θbα lim
η→∞ 1F̃ 1

2

(
η αθ

α2,1 α ;
−Λ2

1

4η
z,

Λ2
2

z

)
.

(3.3.178)
This conformal block can also be computed directly by projecting |Λ2

2〉 onto the Verma module
∆, then doing the OPE of Φ(z) term by term with the resulting expansion and then contracting
with 〈Λ2

1|. In diagrams we represent it by

1
2
F 1

2

(
αθ α2,1 α ; Λ2

1z,
Λ2

2

z

)
=

α2,1

αθ α

. (3.3.179)

12Note that the Gamma functions in the denominator precisely correspond to the one-loop factor of the
single hypermultiplet of the corresponding AGT dual gauge theory.
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The block corresponding to the expansion for z � Λ−2
1

1
2
E

(θ)
1
2

(
α2,1 α ; Λ2

1Λ2
2,

1

Λ1

√
z

)
∼ (Λ2

1)∆2,1+∆(Λ2
2)∆(Λ1

√
z)

1
2

+b2eθbΛ1
√
z

[
1 +O

(
Λ2

1Λ2
2,

1

Λ1

√
z

)]

=

α2,1

θ α

,

(3.3.180)
and similarly for the expansion for z � Λ2

2

z−2∆2,1
1
2
E

(θ)
1
2

(
αα2,1 ; Λ2

1Λ2
2,

√
z

Λ2

)
∼ (Λ2

1)∆(Λ2
2)∆2,1+∆z−2∆2,1

(√
z

Λ2

)− 1
2
−b2

eθbΛ2/
√
z

[
1 +O

(
Λ1Λ2

2,

√
z

Λ2

)]

=

α2,1

α θ

.

(3.3.181)
To connect the intermediate region with z ∼ 0 we decompose the correlator as

〈Λ2
1|Φ(z)|Λ2

2〉 =

∫
dαCαG

−1
α

∑
θ=±

Cαθ
α2,1,α

Cαθ

∣∣∣∣ 1
2
F 1

2

(
αα2,1 αθ ; Λ2

1z,
Λ2

2

z

)∣∣∣∣2 =

=

∫
dαCαG

−1
α

∑
θ′=±

A− b
2
Cα

∣∣∣∣z−2∆2,1
1
2
E

(θ′)
1
2

(
αα2,1 ; Λ2

1Λ2
2,

√
z

Λ2

)∣∣∣∣2 .
(3.3.182)

This is the same constraint as in (3.2.36). Therefore the connection formula is

b2θbα
1
2
F 1

2

(
αα2,1 αθ ; Λ2

1z,
Λ2

2

z

)
=
∑
θ′=±

b−
1
2Qθθ′(bα)z−2∆2,1

1
2
E

(θ′)
1
2

(
αα2,1 ; Λ2

1Λ2
2,

√
z

Λ2

)
,

(3.3.183)
Diagrammatically

α2,1

α αθ

=
∑
θ′=±

Qθθ′

α2,1

α θ′

.

(3.3.184)
Similarly, the connection formula between the intermediate region and ∞ is

b2θbα
1
2
F 1

2

(
αθ α2,1 α ; Λ2

1z,
Λ2

2

z

)
=
∑
θ′=±

b−
1
2Qθθ′(bα) 1

2
E

(θ′)
1
2

(
α2,1 α ; Λ2

1Λ2
2,

1

Λ1

√
z

)
. (3.3.185)

In diagrams:

α2,1

αθ α

=
∑
θ′=±

Qθθ′

α2,1

θ′ α

.

(3.3.186)
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As in the previous cases, we can easily obtain a connection formula connecting the two irregular
singularities, namely

b−
1
2 z−2∆2,1 1

2
E

(θ1)
1
2

(
αα2,1 ; Λ2

1Λ2
2,
√
z

Λ2

)
=
∑

θ2,θ3=± b
2θ2bαQ−1

θ1θ2
(bα)b−

1
2

+2θ2bαQ(−θ2)θ3(bαθ2) 1
2
E

(θ3)
1
2

(
α2,1 αθ2 ; Λ2

1Λ2
2,

1
Λ1
√
z

)
.

(3.3.187)
Diagrammatically:

α2,1

α θ1

=
∑

θ2,θ3=±Q
−1
θ1θ2
Q(−θ2)θ3

α2,1

θ3
αθ2

.

(3.3.188)

Semiclassical limit

The BPZ equation in this limit becomes(
∂2
z −

L2
1

4z
+
u

z2
− L2

2

4z3

)
1
2
F 1

2
= 0 . (3.3.189)

for any semiclassical block. Here u is given by

u = lim
b→0

b2Λ2
2∂Λ2

2
log 1

2
F 1

2

(
α; Λ2

1Λ2
2

)
=

1

4
− a2 +O(L2

1L
2
2) , (3.3.190)

where 1
2
F 1

2
(α; Λ2

1Λ2
2) is the conformal block corresponding to 〈Λ2

1|Λ2
2〉 with intermediate mo-

mentum α. The finite semiclassical conformal blocks are defined as before by normalizing by
the same block without the degenerate field insertion, i.e. for z ∼ 0

z 1
2
E (θ)

1
2

(
a a2,1 ;L2

1L
2
2,
√
z

L2

)
= limb→0 b

−1/2
z−2∆2,1

1
2
E

(θ)
1
2

(
αα2,1 ;Λ2

1Λ2
2,
√
z

Λ2

)
1
2
F 1

2
(α;Λ2

1Λ2
2)

∼ eθL2/
√
zL
−1/2
2 z3/4(1 +O(L2

1L
2
2,
√
z/L2)) .

(3.3.191)
For z ∼ ∞ instead we have

1
2
E (θ)

1
2

(
a2,1 a ;L2

1L
2
2,

1
L1
√
z

)
= limb→0 b

−1/2
1
2
E

(θ)
1
2

(
α2,1 α ;Λ2

1Λ2
2,

1
Λ1
√
z

)
1
2
F 1

2
(α;Λ2

1Λ2
2)

∼ eθL1
√
zL
−1/2
1 z1/4(1 +O(L2

1L
2
2, 1/L1

√
z)) .

(3.3.192)
Here

F = lim
b→0

b2 log
[
(Λ2

1Λ2
2)−∆

1
2
F 1

2

(
α; Λ2

1Λ2
2

)]
. (3.3.193)

Both these blocks satisfy the same BPZ equation (3.3.189). Analogously to the previous con-
fluences, in the connection formula between 0 and∞ we have four different E blocks appearing,
which should reduce to two in the semiclassical limit. Indeed, we have

1
2
E

(θ)
1
2

(
α2,1 αθ′ ; Λ2

1Λ2
2,

1

Λ1

√
z

)
∼
(
Λ2

1Λ2
2

)θ′a
e−

θ′
2
∂aF

1
2
E

(θ)
1
2

(
α2,1 α ; Λ2

1Λ2
2,

1

Λ1

√
z

)
, as b→ 0 ,

(3.3.194)
as in (3.3.34). Now that we have defined the semiclassical conformal blocks, we state the
connection formula. (3.3.187) in the semiclassical limit becomes

z 1
2
E (θ)

1
2

(
a a2,1 ;L2

1L
2
2,
√
z

L2

)
=
∑

θ′

(∑
σ=±Q

−1
θσ (a)Q(−σ)θ′(a) (L1L2)2σa e−

σ
2
∂aF
)

1
2
E (θ′)

1
2

(
a2,1 a ;L2

1L
2
2,

1
L1
√
z

)
.

(3.3.195)
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With connection coefficients13

∑
σ=±

Q−1
θσ (a)Q(−σ)θ′(a) (L1L2)2σa e−

σ
2
∂aF =

=
1

2π

∑
σ=±

Γ(1− 2σa)Γ(−2σa)

(
L1L2

4

)2σa

e−
σ
2
∂aF e−iπ(

1+θ
2 )( 1

2
+2σa)e

iπ
(

1−θ′
2

)
( 1

2
−2σa) .

(3.3.196)

Note that the factors of b appearing in (3.3.187) precisely combine with all the factors of Λ1,Λ2

to give the finite L1, L2.

3.4 Heun equations, confluences and connection formulae

In this section we derive the explicit connection formulae for Heun functions and its confluences
by identifying the semi-classical conformal blocks with the Heun functions and using the results
so far obtained.

3.4.1 The Heun equation

In the following we identify the semiclassical BPZ equation (3.3.28) with Heun’s equation via a
dictionary between the relevant parameters. Moreover, we establish a precise relation between
the Heun functions and the semiclassical regular conformal blocks. This is further used to
obtain explicit formulae for the relevant connection coefficients. WLOG, we focus on the case
t ∼ 0. The connection formulae for t ∼ 1, t ∼ ∞ can be easily derived by matching the Heun
equation and its local solutions with the corresponding semiclassical BPZ equations and the
associated semiclassical conformal blocks.

The dictionary

Let us start giving the dictionary with CFT. The Heun equation reads(
d2

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − t

)
d

dz
+

αβz − q
z(z − 1)(z − t)

)
w(z) = 0 ,

α + β + 1 = γ + δ + ε ,

(3.4.1)

where the condition α + β + 1 = γ + δ + ε ensures that the exponents of the local solutions
at infinity are given by α, β. Here and in the following we restrict to generic values of the
parameters. Define w(z) = P4(z)ψ(z) with

P4(z) = z−γ/2(1− z)−δ/2(t− z)−ε/2 . (3.4.2)

ψ(z) then satisfies the Heun equation in normal form, which is easily compared with the semi-
classical BPZ equation (3.3.28). We get 24 = 16 dictionaries corresponding to the (Z2)4 sym-

13Note also that there are no Gamma functions in the denominator corresponding to the fact that we have
no hypermultiplets in the corresponding AGT dual gauge theory.
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metry associated to flipping the signs of the momenta. We choose the following:

a0 =
1− γ

2
,

a1 =
1− δ

2
,

at =
1− ε

2
,

a∞ =
α− β

2
,

u(0) =
−2q + 2tαβ + γε− t(γ + δ)ε

2(t− 1)
.

(3.4.3)

The inverse dictionary is

α = 1− a0 − a1 − at + a∞ ,

β = 1− a0 − a1 − at − a∞ ,
γ = 1− 2a0 ,

δ = 1− 2a1 ,

ε = 1− 2at ,

q =
1

2
+ t(a2

0 + a2
t + a2

1 − a2
∞)− at − a1t+ a0(2at − 1 + t(2a1 − 1)) + (1− t)u(0) .

(3.4.4)

The two linearly independent solutions for z ∼ 0 of (3.3.28) are related by a0 → −a0. This
corresponds to the identification of the two linearly independent solutions of (3.4.1) for z ∼ 0
as

w
(0)
− (z) = HeunG (t, q, α, β, γ, δ, z) ,

w
(0)
+ (z) = z1−γHeunG (t, q − (γ − 1)(tδ + ε), α + 1− γ, β + 1− γ, 2− γ, δ, z) ,

(3.4.5)

where by definition

HeunG (t, q, α, β, γ, δ, z) = 1 +
q

tγ
z +O(z2) . (3.4.6)

The Heun function can be identified with the semiclassical conformal blocks introduced before.
In particular comparing with (3.3.25) we get the two solutions

w
(0)
− (z) = P4(z) t

1
2
−at−a0e−

1
2
∂a0F (t)F

(
a1

a∞
a
at a0−

a2,1

a0
; t,

z

t

)
,

w
(0)
+ (z) = P4(z) t

1
2
−at+a0e

1
2
∂a0F (t)F

(
a1

a∞
a
at a0+

a2,1

a0
; t,

z

t

)
.

(3.4.7)

Note that HeunG is an expansion in z, while the semiclassical conformal blocks are expanded
both in z and t. To match the two expansions one has to express the accessory parameter q in
terms of the Floquet exponent a as a series in t. This can be done substituting the dictionary
as explained in Appendix C.
The solutions for z ∼ t are given by

w
(t)
− (z) = HeunG

(
t

t− 1
,
q − tαβ

1− t
, α, β, ε, δ,

z − t
1− t

)
,

w
(t)
+ (z) = (t− z)1−εHeunG

(
t

t− 1
,
q − tαβ

1− t
− (ε− 1)

(
t

t− 1
δ + γ

)
, α + 1− ε, β + 1− ε, 2− ε, δ, z − t

1− t

)
.

(3.4.8)

63



Comparing with the semiclassical blocks (3.3.29) we get

w
(t)
− (z) = P4(z) t

1
2
−a0−at(1− t)

1
2
−a1e−

1
2
∂atF (t)

(
(t− 1)

1
2F
(
a1

a∞
a
a0 at−

a2,1

at
;

t

t− 1
,
t− z
t

))
,

w
(t)
+ (z) = P4(z) t

1
2
−a0+at(1− t)

1
2
−a1e

1
2
∂atF (t)

(
(t− 1)

1
2F
(
a1

a∞
a
a0 at+

a2,1

at
;

t

t− 1
,
t− z
t

))
.

(3.4.9)
The two solutions for z ∼ 1 read

w
(1)
− (z) =

(
z − t
1− t

)−α
HeunG

(
t, q + α(δ − β), α, δ + γ − β, δ, γ, t1− z

t− z

)
,

w
(1)
+ (z) =

(
z − t
1− t

)−α−1+δ

(1− z)1−δHeunG
(
t, q − α(β + δ − 2) + (δ − 1)(α + β − 1− tγ), α + 1− δ, 1 + γ − β, 2− δ, γ, t1− z

t− z

)
,

(3.4.10)
and matching with (3.3.37) gives

w
(1)
− (z) = P4(z)e±iπ(a1+at)(1− t)

1
2
−ate−

1
2
∂a1F (t)

(
(t(1− t))−

1
2 (t− z)F

(
a0

at
a
a∞ a1−

a2,1

a1
; t,

1− z
t− z

))
w

(1)
+ (z) = P4(z)e±iπ(−a1+at)(1− t)

1
2
−ate

1
2
∂a1F (t)

(
(t(1− t))−

1
2 (t− z)F

(
a0

at
a
a∞ a1+

a2,1

a1
; t,

1− z
t− z

))
.

(3.4.11)
The ± ambuiguity in the overall phase depends on the choice of branch corresponding to

P4(z)F
(
a0

at
a
a∞ a1θ

a2,1

a1
; t,

1− z
t− z

)
∝ (t− 1)θa1+at = e±iπ(θa1+at) (1− t)θa1+at . (3.4.12)

Finally, the two solutions near z ∼ ∞ are given by

w
(∞)
+ (z) = z−αHeunG

(
t, q − αβ(1 + t) + α(δ + tε), α, α− γ + 1, α− β + 1, α + β + 1− γ − δ, t

z

)
,

w
(∞)
− (z) = z−βHeunG

(
t, q − αβ(1 + t) + β(δ + tε), β, β − γ + 1, β − α + 1, α + β + 1− γ − δ, t

z

)
.

(3.4.13)
Comparing with (3.3.31) we get

w
(∞)
+ (z) = P4(z)e±iπ(1−a1−at)e

1
2
∂a∞F (t)

(
t−

1
2 zF

(
at
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a
a1 a∞+

a2,1
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1

z
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,
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(∞)
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∂a∞F (t)
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1
2 zF

(
at
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a
a1 a∞−

a2,1

a∞
; t,

1

z
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,

(3.4.14)

where again the ± in the phase depends on the choice of branch corresponding to

P4(z) = z−
1
2

+a0(1−z)−
1
2

+a1(t−z)−
1
2

+at = e∓iπ(1−a1−at)z−
1
2

+a0(z−1)−
1
2

+a1(z−t)−
1
2

+at . (3.4.15)

Connection formulae

Finally we are in the position to give the connection formulae for the Heun function. Let us
start with z ∼ 0 and z ∼ t. The corresponding connection formula can be read off from (3.3.30),
which in the Heun notation reads

w
(0)
− (z) =

Γ(1− ε)Γ(γ)e
1
2(∂at−∂a0)F

Γ
(

1+γ−ε
2

+ a(q)
)

Γ
(

1+γ−ε
2
− a(q)

)(1− t)−
δ
2w

(t)
− (z) +

Γ(ε− 1)Γ(γ)e
1
2(−∂at−∂a0)F

Γ
(−1+γ+ε

2
+ a(q)

)
Γ
(−1+γ+ε

2
− a(q)

)tε−1(1− t)−
δ
2w

(t)
+ (z) ,

(3.4.16)
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for the other solution one finds

w
(0)
+ (z) =

Γ(1− ε)Γ(2− γ)e
1
2(∂at+∂a0)F

Γ
(
1 + 1−γ−ε

2
+ a(q)

)
Γ
(
1 + 1−γ−ε

2
− a(q)

)t1−γ(1− t)− δ2w(t)
− (z) +

Γ(ε− 1)Γ(γ)e
1
2(−∂at+∂a0)F

Γ
(

1−γ+ε
2

+ a(q)
)

Γ
(

1−γ+ε
2
− a(q)

)tε−γ(1− t)− δ2w(t)
+ (z) .

(3.4.17)
Here a(q) has to be computed inverting the relation (3.3.27) and substituting the dictionary as
shown explicitly in Appendix C, formula (C.1.13). The result to first order is

a(q) =
1

16

√
3− 4q + γ2 + 2γ(ε− 1) + ε(ε− 2)×

×
(

8− 4(−1 + 2q − ε(γ + ε− 2))(−3 + 4q + (α− β)− γ2 − δ(δ − 2)− 2γ(ε− 1)− ε(ε− 2))

(3− 4q + γ2 + 2γ(ε− 1) + ε(ε− 2))(2− 4q + γ2 + 2γ(ε− 1) + ε(ε− 2))
t

)
+O(t2) .

(3.4.18)
In Appendix C we also explain how to compute the classical conformal block F and its deriva-
tives (see formula (C.1.10)). For example, to first order

∂atF (t) =
(4a(q)2 − α2 + 2αβ − β2 − 2δ + δ2) (1− ε)

2− 8a(q)2
t+O(t2) . (3.4.19)

The connection formula for w(0)
+ (z) can be obtained from (3.4.16) by multiplying by z1−γ,

substituting

q → q − (γ − 1)(tδ + ε), α→ α + 1− γ, β → β + 1− γ, γ → 2− γ (3.4.20)

as in (3.4.5), and noting that

HeunG
(

t

t− 1
,
q − tαβ

1− t
, α, β, ε, δ,

z − t
1− t

)
=

=
(z
t

)1−γ
HeunG

(
t

t− 1
,
q − t(α + 1− γ)(β + 1− γ)− (γ − 1)(tδ + ε)

1− t
, α + 1− γ, β + 1− γ, ε, δ, z − t

1− t

)
.

(3.4.21)
Similarly, the connection formula from z ∼ 0 to z ∼ ∞ can be read off from (3.3.35), and gives

w
(0)
− (z) =

(∑
σ=±

Γ(1− 2σa(q))Γ(−2σa(q))Γ(γ)Γ(β − α)t
γ+ε−1

2
−σa(q)e−

1
2(∂a0−∂a∞+σ∂a)F eiπ(

δ+γ
2 )

Γ
(
γ−ε+1

2
− σa(q)

)
Γ
(
γ+ε−1

2
− σa(q)

)
Γ
(
1 + β−α−δ

2
− σa(q)

)
Γ
(
β−α+δ

2
− σa(q)

))w(∞)
+ (z)+

+

(∑
σ=±

Γ(1− 2σa(q))Γ(−2σa(q))Γ(γ)Γ(α− β)t
γ+ε−1

2
−σa(q)e−

1
2(∂a0−∂a∞+σ∂a)F eiπ(

δ+γ
2 )

Γ
(
γ−ε+1

2
− σa(q)

)
Γ
(
γ+ε−1

2
− σa(q)

)
Γ
(
1 + α−β−δ

2
− σa(q)

)
Γ
(
α−β+δ

2
− σa(q)

))w(∞)
− (z) .

(3.4.22)
Let us conclude the section by giving the connection formulae from 1 to infinity. This can be
derived from (3.3.20), and gives

w
(1)
− (z) =− (1− t)

1
2
−at Γ(β − α)Γ(δ)e−

1
2(∂a1+∂a∞)F (t)

Γ
(
δ−α+β

2
+ a(q)

)
Γ
(
δ−α+β

2
− a(q)

)w(∞)
+ (z)+

− (1− t)
1
2
−at Γ(α− β)Γ(δ)e−

1
2(∂a1−∂a∞)F (t)

Γ
(
δ+α−β

2
+ a(q)

)
Γ
(
δ+α−β

2
− a(q)

)w(∞)
− (z) .

(3.4.23)

The connection formulae involving the other solutions can be read off from the previous ones,
and the formulae involving different pairs of points can be similarly derived by considering
the corresponding semiclassical conformal blocks. We conclude by stressing again that the
connection formulae involving different regions in the t−plane are completely analogous to the
previous ones, since all the singularities are regular. This will not be the case in the following.
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3.4.2 The confluent Heun equation

The dictionary

Here we establish the dictionary between our results of section 3.3.2 on confluent conformal
blocks and the confluent Heun equation (CHE) in standard notation, which reads

d2w

dz2
+

(
γ

z
+

δ

z − 1
+ ε

)
dw

dz
+

αz − q
z(z − 1)

w = 0 . (3.4.24)

By defining w(z) = P3(z)ψ(z) with P3(z) = e−εz/2z−γ/2(1−z)−δ/2, we get rid of the first deriva-
tive and bring the equation to normal form, which can easily be compared with the semiclassical
BPZ equation (3.3.82). We can read off the dictionary between the CFT parameters and the
parameters of the CHE:

a0 =
1− γ

2
,

a1 =
1− δ

2
,

m =
α

ε
− γ + δ

2
,

L = ε ,

u =
1

4
− q + α− (γ + δ − 1)2

4
− δε

2
,

(3.4.25)

where

u = lim
b→0

b2Λ∂Λ log 1F

(
µα

α1

α0
; Λ

)
=

1

4
− a2 +O(L) (3.4.26)

as in (3.3.82). This relation can then be inverted to find a in terms of the parameters of the
CHE: we denote this by a(q). We write the solutions to the CHE in standard form in the
notation of Mathematica, and their relation to the conformal blocks used before. We focus first
on the blocks given as an expansion for small L. Then, near z = 0 we have the two linearly
independent solutions

HeunC(q, α, γ, δ, ε; z) ,

z1−γHeunC (q + (1− γ)(ε− δ), α + (1− γ)ε, 2− γ, δ, ε; z) ,
(3.4.27)

where the confluent Heun function has the following expansion around z = 0:

HeunC(q, α, γ, δ, ε; z) = 1− q

γ
z +O(z2) . (3.4.28)

Comparing with the semiclassical conformal blocks in 3.3.2 we identify

HeunC(q, α, γ, δ, ε; z) = P3(z)e−
1
2
∂a0F 1F

(
m a

a1 a0−
a2,1

a0
;L, z

)
,

z1−γHeunC (q + (1− γ)(ε− δ), α + (1− γ)ε, 2− γ, δ, ε; z) = P3(z)e
1
2
∂a0F 1F

(
m a

a1 a0+
a2,1

a0
;L, z

)
,

(3.4.29)
where

F = lim
b→0

b2 log

[
Λ−∆

1F

(
µα

α1

α0
; Λ

)]
. (3.4.30)
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Doing a Möbius transformation z → 1 − z we obtain solutions around z = 1, which being
a regular singularity can again be written in terms of HeunC. This amounts to sending γ →
δ, δ → γ, ε→ −ε, α→ −α, q → q − α. The two solutions are therefore

HeunC(q − α,−α, δ, γ,−ε; 1− z) ,

(1− z)1−δHeunC (q − α− (1− δ)(ε+ γ),−α− (1− δ)ε, 2− δ, γ,−ε; 1− z) .
(3.4.31)

Again, comparing with the semiclassical conformal blocks in 3.3.2, we identify

HeunC(q − α,−α, δ, γ,−ε; 1− z) = P3(z)e−
1
2
∂a1F 1F

(
−m a

a0 a1−
a2,1

a1
;L, 1− z

)
,

(1− z)1−δHeunC (q − α− (1− δ)(ε+ γ),−α− (1− δ)ε, 2− δ, γ,−ε; 1− z) =

= P3(z)e
1
2
∂a1F 1F

(
−m a

a0 a1+
a2,1

a1
;L, 1− z

)
.

(3.4.32)

Around the irregular singular point z = ∞, we write the solutions in terms of a different
function HeunC∞:

z−
α
ε HeunC∞(q, α, γ, δ, ε; z−1)

e−εzz
α
ε
−γ−δHeunC∞(q − γε, α− ε(γ + δ), γ, δ,−ε; z−1) ,

(3.4.33)

where the function HeunC∞ has a simple asymptotic expansion around z =∞:

HeunC∞(q, α, γ, δ, ε; z−1) ∼ 1 +
α2 − (γ + δ − 1)αε+ (α− q)ε2

ε3
z−1 +O(z−2) . (3.4.34)

Comparing with the semiclassical conformal blocks we identify

z−
α
ε HeunC∞(q, α, γ, δ, ε; z−1) = e∓

iπδ
2 P3(z)e

1
2
∂mFL

1
2

+m
1D
(
m
a2,1 m+ a

a1

a0
;L,

1

z

)
e−εzz

α
ε
−γ−δHeunC∞(q − γε, α− ε(γ + δ), γ, δ,−ε; z−1) = e∓

iπδ
2 P3(z)e−

1
2
∂mFL

1
2
−m

1D
(
m
a2,1 m− a

a1

a0
;L,

1

z

)
.

(3.4.35)
The phase e∓

iπδ
2 comes from the fact that near z =∞

P3(z) ∼ e−εz/2z−γ/2(−z)−δ/2 = e±
iπδ
2 e−εz/2z−γ/2−δ/2 . (3.4.36)

The second solution around z = ∞ can be found by using the manifest symmetry (m,L) →
(−m,−L) of the semiclassical BPZ equation which according to the dictionary gives the sym-
metry (q, α, ε)→ (q − γε, α− ε(γ + δ),−ε) of the CHE in normal form.
For the large-L blocks the story is analogous. The dictionary (3.4.25) is the same, up to the
substitution

u→ uD = limb→0 b
2Λ∂Λ log 1D

(
µ
α1 µ′ α0; 1

Λ

)
= −(m′ −m)L+ 1

4
− a2

0 + 2m′(m′ −m) +O(L−1) .

(3.4.37)
This relation can be inverted to find m′ in terms of the parameters of the CHE. We will call
this m′(q). With this dictionary we can identify solutions of the CHE with conformal blocks as
follows: near z = 0 we have

HeunC(q, α, γ, δ, ε; z) = P3(z)e−
1
2
∂a0FD 1D

(
m
a1 m′ a0−

a2,1

a0
;

1

L
,Lz

)
,

z1−γHeunC (q + (1− γ)(ε− δ), α + (1− γ)ε, 2− γ, δ, ε; z) = P3(z)e
1
2
∂a0FD 1D

(
m
a1 m′ a0+

a2,1

a0
;

1

L
,Lz

)
,

(3.4.38)
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with FD given in (3.3.93). Near z = 1 we have

HeunC(q − α,−α, δ, γ,−ε; 1− z) = P3(z)e−
1
2
∂a1FD 1D

(
−ma0 m′ −m a1−

a2,1

a1
;

1

L
,L(1− z)

)
,

(1− z)1−δHeunC (q − α− (1− δ)(ε+ γ),−α− (1− δ)ε, 2− δ, γ,−ε; 1− z) =

= P3(z)e
1
2
∂a1FD 1D

(
−ma0 m′ −m a1+

a2,1

a1
;

1

L
,L(1− z)

)
.

(3.4.39)
While near z =∞ we have

z−
α
ε HeunC∞(q, α, γ, δ, ε; z−1) = e∓

iπδ
2 P3(z)eL/2e

1
2
∂mFDL

1
2
−(m′−m)

1D
(
m
a2,1 m+

a1 m′ a0;
1

L
,
1

z

)
e−εzz

α
ε
−γ−δHeunC∞(q − γε, α− ε(γ + δ), γ, δ,−ε; z−1) = e∓

iπδ
2 P3(z)e−L/2e−

1
2
∂mFDL

1
2

+(m′−m)
1D
(
m
a2,1 m+

a1 m′ a0;
1

L
,
1

z

)
.

(3.4.40)
As the careful reader should have noticed, we identify the small-L and large-L conformal blocks
with the same confluent Heun functions. The only difference is in the expansion of the accessory
parameter: in one case it is given in terms of the Floquet exponent a as an expansion in L, and
in the other case in terms of the parameter m′ as an expansion in L−1.

Connection formulae

The connection formula between z = 0, 1 written in (3.3.91) for the semiclassical conformal
blocks can now be restated as:

HeunC(q, α, γ, δ, ε; z) =
Γ(1− δ)Γ(γ)e−

1
2
∂a0F+ 1

2
∂a1F

Γ
(

1+γ−δ
2

+ a(q)
)

Γ
(

1+γ−δ
2
− a(q)

)HeunC(q − α,−α, δ, γ,−ε; 1− z)+

+
Γ(δ − 1)Γ(γ)e−

1
2
∂a0F−

1
2
∂a1F

Γ
(
γ+δ−1

2
+ a(q)

)
Γ
(
γ+δ−1

2
− a(q)

)(1− z)1−δHeunC (q − α− (1− δ)(ε+ γ),−α− (1− δ)ε, 2− δ, γ,−ε; 1− z) .

(3.4.41)
The quantities a(q) and F can be computed as explained in Appendix C.
The connection formula between z = 1,∞ written in (3.3.89) reads in terms of confluent Heun
functions:

HeunC(q − α,−α, δ, γ,−ε; 1− z) =

=

(∑
σ=±

Γ(−2σa(q))Γ(1− 2σa(q))Γ(δ)ε−
1
2
−α
ε

+ γ+δ
2

+σa(q)e±
iπδ
2
− 1

2
∂a1F+ 1

2
∂mF−σ2 ∂aF (a)

Γ
(

1−γ+δ
2
− σa(q)

)
Γ
(
γ+δ−1

2
− σa(q)

)
Γ
(

1+γ+δ
2
− α

ε
− σa(q)

) )
×

× z−
α
ε HeunC∞(q, α, γ, δ, ε; z) +

+

(∑
σ=±

Γ(−2σa(q))Γ(1− 2σa(q))Γ(δ)ε−
1
2

+α
ε
− γ+δ

2
+σa(q)e±

iπδ
2
− 1

2
∂a1F+ 1

2
∂mF−σ2 ∂aF (a)

Γ
(

1−γ+δ
2
− σa(q)

)
Γ
(
γ+δ−1

2
− σa(q)

)
Γ
(

1−γ−δ
2

+ α
ε
− σa(q)

) )
×

× e−εzz
α
ε
−γ−δHeunC∞(q − γε, α− ε(γ + δ), γ, δ,−ε; z) .

(3.4.42)

Here the phase ambiguity comes from (3.4.35), i.e. corresponds to the choice (−z)−δ/2 =

e±
iπδ
2 z−δ/2. A similar expression can be found connecting z = 0 and ∞. All connection

coefficients given above are calculated in a series expansion in L. Therefore they are not valid
for large L and in that case one has to use different connection formulae, which are derived in
section 3.3.2 for the large-L semiclassical conformal blocks. Here we restate those results in the
language of Heun functions. The connection formula from z = 0 to z = 1, valid for large L is
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given by

HeunC(q, α, γ, δ, ε; z) =

=

(∑
σ=±

Γ(γ)Γ(1− δ)eσ2 εε−σ(2m′(q)−α
ε

+ γ+δ
2 )e−

1
2
∂a0FD+ 1

2
∂a1FD−

σ
2
∂m′FDeiπ(

1−σ
2 )(αε −δ−2m′(q))

Γ
(
γ
2
− σm′(q)

)
Γ
(
1− δ

2
− σ

(
m′(q)− α

ε
− γ+δ

2

)) )
×

× HeunC(q − α,−α, δ, γ,−ε; 1− z) +

+

(∑
σ=±

Γ(γ)Γ(δ − 1)e
σ
2
εε−σ(2m′(q)−α

ε
+ γ+δ

2 )e−
1
2
∂a0FD−

1
2
∂a1FD−

σ
2
∂m′FDeiπ(

1−σ
2 )(αε −2m′(q)−1)

Γ
(
γ
2
− σm′(q)

)
Γ
(
δ
2
− σ

(
m′(q)− α

ε
− γ+δ

2

)) )
×

× HeunC (q − α− (1− δ)(ε+ γ),−α− (1− δ)ε, 2− δ, γ,−ε; 1− z) ,
(3.4.43)

where the quantities m′(q) and FD are computed as explained in Appendix C.
The connection formula from z = 1 to ∞ is simpler and reads

HeunC(q − α,−α, δ, γ,−ε; 1− z) =

=e±
iπδ
2
− 1

2
∂a1FD−

1
2
∂mFDε−

1
2
−α
ε

+ γ+δ−ε
2

+m′(q) Γ(δ)eiπ(
α
ε
− γ

2
−m′(q))

Γ
(
−α

ε
+ γ

2
+ δ +m′(q)

)z−αε HeunC∞(q, α, γ, δ, ε; z−1)+

+e±
iπδ
2
− 1

2
∂a1FD+ 1

2
∂mFDε−

1
2

+α
ε
− γ+δ−ε

2
−m′(q) Γ(δ)

Γ
(
α
ε
− γ

2
+m′(q)

)e−εzz αε −γ−δHeunC∞(q − γε, α− ε(γ + δ), γ, δ,−ε; z−1) .

(3.4.44)

3.4.3 The reduced confluent Heun equation

The dictionary

Here we establish the dictionary between our results of section 3.3.3 on reduced confluent
conformal blocks the reduced confluent Heun equation (RCHE) in standard notation, which
reads

d2w

dz2
+

(
γ

z
+

δ

z − 1

)
dw

dz
+

βz − q
z(z − 1)

w = 0 . (3.4.45)

This is of course just the CHE specialized to14 ε = 0. The interesting difference with respect to
the CHE is the behaviour for z →∞, which is no longer controlled by ε and the degree of the
singularity gets lowered to 1/2. By defining w(z) = P2(z)ψ(z) with P2(z) = z−γ/2(1−z)−δ/2, we
pass to the normal form which is easily compared with the semiclassical BPZ equation (3.3.121).
The dictionary between the CFT parameters and the parameters of the RCHE reads:

a0 =
1− γ

2
,

a1 =
1− δ

2
,

L = 2i
√
β ,

u =
1

4
− q + β − (γ + δ − 1)2

4
,

(3.4.46)

where
u = lim

b→0
b2Λ2∂Λ2 log 1

2
F

(
α
α1

α0
; Λ2

)
=

1

4
− a2 +O(L2) (3.4.47)

as in (3.3.121). This relation can then be inverted to find a in terms of the parameters of the
RCHE: we denote this by a(q). We therefore infer the relation between the solutions of the

14This corresponds to the usual decoupling limit m→∞, L→ 0 such that mL remains finite.
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RCHE in standard form and the conformal blocks defined before. Near z = 0 we have the
following two linearly independent solutions to the RCHE in standard form (3.4.45):

HeunRC(q, β, γ, δ; z) ,

z1−γHeunRC (q − (1− γ)δ, β, 2− γ, δ; z) ,
(3.4.48)

where
F = lim

b→0
b2 log

[
Λ−2∆

1
2
F

(
α
α1

α0
; Λ2

)]
. (3.4.49)

Since HeunRC is nothing else than HeunC with ε = 0, it has the following expansion around
z = 0:

HeunRC(q, β, γ, δ; z) = 1− q

γ
z +O(z2) . (3.4.50)

Comparing with the conformal blocks in subsection 3.3.3 we identify

HeunRC(q, β, γ, δ; z) = P2(z)e−
1
2
∂a0F 1

2
F
(
a
a1 a0−

a2,1

a0
;L2, z

)
,

z1−γHeunRC (q − (1− γ)δ, β, 2− γ, δ; z) = P2(z)e
1
2
∂a0F 1

2
F
(
a
a1 a0+

a2,1

a0
;L2, z

)
,

(3.4.51)

Doing a Möbius transformation z → 1− z we obtain the solutions around z = 1. Since this is
a regular singularity the solution can again be written in terms of HeunRC. This amounts to
sending γ → δ, δ → γ, β → −β, q → q − β. The two solutions are therefore

HeunRC(q − β,−β, δ, γ; 1− z) ,

(1− z)1−δHeunRC (q − β − (1− δ)γ,−β, 2− δ, γ; 1− z) .
(3.4.52)

Comparig with the conformal blocks we identify

HeunRC(q − β,−β, δ, γ; 1− z) = P2(z)e−
1
2
∂a1F 1

2
F
(
a
a0 a1−

a2,1

a1
;−L2, 1− z

)
,

(1− z)1−δHeunRC (q − β − (1− δ)γ,−β, 2− δ, γ; 1− z) =

= P2(z)e
1
2
∂a1F 1

2
F
(
a
a0 a1+

a2,1

a1
;−L2, 1− z

)
.

(3.4.53)

The new behaviour arises for z →∞, where we write the solutions in terms of another function
HeunRC∞:

e2i
√
βzz

1
4
− γ+δ

2 HeunRC∞(q, β, γ, δ; z−
1
2 )

e−2i
√
βzz

1
4
− γ+δ

2 HeunRC∞(q, e2πiβ, γ, δ; z−
1
2 ) .

(3.4.54)

The function HeunRC∞ has a simple asymptotic expansion around z =∞:

HeunRC∞(q, β, γ, δ; z−
1
2 ) ∼ 1−

q − β +
(
γ+δ

2
− 3

4

) (
γ+δ

2
− 1

4

)
i
√
β

z−
1
2 +O(z−1) . (3.4.55)

Comparing with the conformal blocks we identify

e2i
√
βzz

1
4
− γ+δ

2 HeunRC∞(q, β, γ, δ; z−
1
2 ) = e∓

iπδ
2 P2(z)L

1
2 1

2
E (+)

(
a2,1 a

a1

a0
;L2,

1

L
√
z

)
e−2i

√
βzz

1
4
− γ+δ

2 HeunRC∞(q, e2πiβ, γ, δ; z−
1
2 ) = e∓

iπδ
2 P2(z)L

1
2 1

2
E (−)

(
a2,1 a

a1

a0
;L2,

1

L
√
z

)
.

(3.4.56)
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Note that due to the nature of the rank 1/2 singularity at infinity, the expansion is in inverse
powers of

√
z. The phase e∓

iπδ
2 comes from the fact that near z =∞

P2(z) ∼ z−γ/2(−z)−δ/2 = e±
iπδ
2 z−γ/2−δ/2 . (3.4.57)

The second solution around z = ∞ can be found by using the manifest symmetry L → −L
of the BPZ equation which according to the dictionary gives the symmetry β → e2πiβ of the
RCHE in normal form.

Connection formulae

The connection formula between z = 0, 1 written in (3.3.127) for the semiclassical conformal
blocks can now be restated as:

HeunRC(q, β, γ, δ; z) =
Γ(1− δ)Γ(γ)e−

1
2
∂a0F+ 1

2
∂a1F

Γ
(

1+γ−δ
2

+ a(q)
)

Γ
(

1+γ−δ
2
− a(q)

)HeunRC(q − β,−β, δ, γ; 1− z)+

+
Γ(δ − 1)Γ(γ)e−

1
2
∂a0F−

1
2
∂a1F

Γ
(
γ+δ−1

2
+ a(q)

)
Γ
(
γ+δ−1

2
− a(q)

)(1− z)1−δHeunRC (q − β − (1− δ)γ,−β, 2− δ, γ; 1− z) ,

(3.4.58)
where the quantities a(q) and F are computed as explained in Appendix C.
The connection formula between z = 1,∞ written in (3.3.128) reads

HeunRC(q − β,−β, δ, γ; 1− z) =

=

(∑
σ=±

Γ(−2σa(q))Γ(1− 2σa(q))Γ(δ) (eiπβ)
− 1

4
+σa(q)

e±
iπδ
2
− 1

2
∂a1F−

σ
2
∂aF

2
√
πΓ
(

1−γ+δ
2
− σa(q)

)
Γ
(
γ+δ−1

2
− σa(q)

) )
e2i
√
βzz

1
4
− γ+δ

2 HeunRC∞(q, β, γ, δ; z−
1
2 )+

+

(∑
σ=±

Γ(−2σa(q))Γ(1− 2σa(q))Γ(δ) (e−iπβ)
− 1

4
+σa(q)

e±
iπδ
2
− 1

2
∂a1F−

σ
2
∂aF

2
√
πΓ
(

1−γ+δ
2
− σa(q)

)
Γ
(
γ+δ−1

2
− σa(q)

) )
e−2i

√
βzz

1
4
− γ+δ

2 HeunRC∞(q, e2πiβ, γ, δ; z−
1
2 ) .

(3.4.59)
Here the phase ambiguity comes from (3.4.56), i.e. corresponds to the choice (−z)−δ/2 =

e±
iπδ
2 z−δ/2. A similar expression can be found connecting z = 0 and ∞.

3.4.4 The doubly confluent Heun equation

The dictionary

The doubly confluent Heun equation (DCHE) reads(
d2

dz2
+
δ + γz + z2

z2

d

dz
+
αz − q
z2

)
w(z) = 0 . (3.4.60)

Again putting the DCHE in its normal form via the substitution w(z) = P̃2(z)ψ(z) with

P̃2(z) = e
1
2( δz−z)z−

γ
2 (3.4.61)

we find the 22 = 4 different dictionaries with (3.3.147) corresponding to the Z2
2 symmetries

(mi, Li)→ (−mi,−Li) for i = 1, 2. For brevity we only write one of them, namely

L1 = 1 ,

L2 = δ ,

m1 =
1

2
(2α− γ) ,

m2 = 1− γ

2
,

u =
1

4

(
−4q + 2γ − γ2 − 2δ

)
.

(3.4.62)
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and the inverse dictionary is

α = 1 +m1 −m2 ,

δ = L2 ,

γ = 2(1−m2) ,

q = −1

2
(L2 + 2u+ 2m2(m2 − 1)) ,

L1 = 1 .

(3.4.63)

We denote the two solutions of the DCHE near the irregular singularity at zero as

HeunDC (q, α, γ, δ, z) ,

e
δ
z z2−γHeunDC (δ + q + γ − 2, α− γ + 2, γ,−δ, z) ,

(3.4.64)

where HeunDC has the following asymptotic expansion around z = 0:

HeunDC (q, α, γ, δ, z) ∼ 1 +
q

δ
z +

q(q − γ)− αδ
2δ2

z2 +O(z3) . (3.4.65)

Comparing with the semiclassical block (3.3.146) we get

HeunDC (q, α, γ, δ, z) = P̃2(z)L
1
2
−m2

2 e−
1
2
∂m2F

(
z 1D1

(
m2

a2,1 m2− a m1;L2,
z

L2

))
,

HeunDC (δ + q + γ − 2, α− γ + 2, γ,−δ, z) = P̃2(z)L
1
2

+m2

2 e
1
2
∂m2F

(
z 1D1

(
m2

a2,1 m2+ a m1;L2,
z

L2

))
.

(3.4.66)
The solutions near the irregular singularity at infinity are given by

z−αHeunDC
(
q − α(α + 1− γ), α, 2(α + 1)− γ, δ,−δ

z

)
,

e−zzα−γHeunDC
(
q + δ + (γ − α)(α− 1), γ − α,−2(α− 1) + γ,−δ,−δ

z

)
.

(3.4.67)

Comparing with the semiclassical block (3.3.149) we find

HeunDC
(
q − α(α + 1− γ), α, 2(α + 1)− γ, δ,−δ

z

)
= P̃2(z)e

1
2
∂m1F 1D1

(
m1

a2,1 m1+ a m2;L2,
1

z

)
,

HeunDC
(
q + δ + (γ − α)(α− 1), γ − α,−2(α− 1) + γ,−δ,−δ

z

)
= P̃2(z)e−

1
2
∂m1F 1D1

(
m1

a2,1 m1− a m2;L2,
1

z

)
.

(3.4.68)

Connection formulae

In this case the only connection formula is the one between zero and infinity. This can be
obtained from equation (3.3.151) and reads

HeunDC (q, α, γ, δ, z) =

(∑
σ=±

Γ (−2σa) Γ (1− 2σa) δ−
1
2

+ γ
2

+σa

Γ
(

1
2
−
(
1− γ

2

)
− σa

)
Γ
(

1
2
− 2α−γ

2
− σa

))×
× e

1
2(−∂m1−∂m2−σ∂a)F z−αHeunDC

(
q − α(α + 1− γ), α, 2(α + 1)− γ, δ,−δ

z

)
+

+

(∑
σ=±

Γ (−2σa) Γ (1− 2σa) δ−
1
2

+ γ
2

+σaeiπ(
1+γ

2
−α−σa)

Γ
(

1
2
−
(
1− γ

2

)
− σa

)
Γ
(

1
2

+ 2α−γ
2
− σa

) e
1
2(∂m1−∂m2−σ∂a)F

)
×

× e−zzα−γHeunDC
(
q + δ + (γ − α)(α− 1), γ − α,−2(α− 1) + γ,−δ,−δ

z

)
,

(3.4.69)
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3.4.5 The reduced doubly confluent Heun equation

The dictionary

Here we establish the dictionary between our results of section 3.3.5 on reduced doubly confluent
conformal blocks and the reduced doubly confluent Heun equation (RDCHE) in the standard
form, which reads

d2w

dz2
− dw

dz
+
βz − q + εz−1

z2
w = 0 . (3.4.70)

By defining w(z) = ez/2ψ(z) we get rid of the first derivative and bring the equation to the
normal form which is to be compared with the semiclassical BPZ equation (3.3.169). The
resulting dictionary between the CFT parameters and the parameters of the RDCHE is

L1 = 1 ,

L2 = 2i
√
ε ,

m = β ,

u = −q .

(3.4.71)

The fact that L1 = 1 is of course consistent with the fact that it is a redundant parameter.
Here

u = lim
b→0

b2Λ2
2∂Λ2

2
log 1F 1

2

(
µα; Λ1Λ2

2

)
=

1

4
− a2 +O(L1L

2
2) (3.4.72)

as in (3.3.169). This relation can then be inverted to find a in terms of the parameters of the
RDCHE: we denote this by a(q). We can now write the solutions to the RDCHE in standard
form and their relation to the conformal blocks by comparison. Near z = 0 we denote the two
linearly independent solutions to the RDCHE in standard form (3.4.70) by:

e2i
√
ε/zz3/4HeunRDC0(q, β, ε;

√
z) ,

e−2i
√
ε/zz3/4HeunRDC0(q, β, e2πiε;

√
z) .

(3.4.73)

The two solutions are related by the manifest symmetry L2 → −L2 of the BPZ equation which
according to the dictionary (3.4.71) gives the symmetry ε → e2πiε of the RDCHE in normal
form. The function HeunRDC0 has the following asymptotic expansion around z = 0:

HeunRDC0(q, β, ε;
√
z) ∼ 1−

3
16

+ q

i
√
ε

√
z +O (z) . (3.4.74)

Note again that due to the presence of a rank 1/2 singularity, the expansion is in powers of
√
z.

Comparing with the semiclassical conformal blocks in 3.3.5 we identify

e2i
√
ε/zz3/4HeunRDC0(q, β, ε;

√
z) = ez/2L

1
2
2 1E (+)

1
2

(
maa2,1 ;L2

2,

√
z

L2

)
,

e−2i
√
ε/zz3/4HeunRDC0(q, β, e2πiε;

√
z) = ez/2L

1
2
2 1E (−)

1
2

(
maa2,1 ;L2

2,

√
z

L2

)
.

(3.4.75)

For z ∼ ∞ instead we have the two solutions

zβHeunRDC∞(q, β, ε; z−1) ,

ezz−βHeunRDC∞(q,−β,−ε;−z−1) .
(3.4.76)

The function HeunRDC∞(q, β, ε; z−1) has the following asymptotic expansion around z = ∞:

HeunRDC∞(q, β, ε; z−1) ∼ 1 + (q + β − β2)z−1 +O
(
z−2
)
. (3.4.77)
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Comparing with the semiclassical conformal blocks we identify

zβHeunRDC∞(q, β, ε; z−1) = ez/2e−
1
2
∂mF

1D 1
2

(
m
a2,1 m− a ;L2

2,
1

z

)
,

ezz−βHeunRDC∞(q,−β,−ε;−z−1) = ez/2e
1
2
∂mF

1D 1
2

(
m
a2,1 m+ a ;L2

2,
1

z

)
.

(3.4.78)

These solutions are related by the symmetry (m,L1) → (−m,−L1) of the semiclassical BPZ
equation. Notice that one can rescale the BPZ equation such that it only depends on the
combination L1z and the coefficient of the cubic pole is −L1L

2
2/4. By setting L1 = 1 according

to the dictionary with the RDCHE, the above symmetry descends to the symmetry (β, ε, z)→
(−β,−ε,−z) of the RDCHE in normal form. Furthermore, in the equation above

F = lim
b→0

b2 log
[
(Λ1Λ2

2)−∆
1F 1

2

(
µα; Λ1Λ2

2

)]
(3.4.79)

as in (3.3.172).

Connection formulae

The connection formula between z = 0 and ∞ written in (3.3.175) for the semiclassical confor-
mal blocks can now be restated as:

e2i
√
ε/zz3/4HeunRDC0(q, β, ε;

√
z) =

=

(∑
σ=±

Γ(1− 2σa(q))Γ(−2σa(q))
√
πΓ
(

1
2

+ β − σa(q)
) ε

1
4

+σa(q)e
1
2
∂mF−σ2 ∂aF e−iπ(

1
4

+σa(q))eiπ(
1
2
−β−σa(q))

)
zβHeunRDC∞(q, β, ε; z−1)+

+

(∑
σ=±

Γ(1− 2σa(q))Γ(−2σa(q))
√
πΓ
(

1
2
− β − σa(q)

) ε
1
4

+σa(q)e
1
2
∂mF−σ2 ∂aF e−iπ(

1
4

+σa(q))

)
ezz−βHeunRDC∞(q,−β,−ε;−z−1) ,

(3.4.80)
where the quantities a(q) and F are computed as explained in Appendix C.

3.4.6 The doubly reduced doubly confluent Heun equation

The dictionary

Here we establish the dictionary between our results of section 3.3.6 on doubly reduced doubly
confluent conformal blocks and the corresponding Heun equation (DRDCHE) which reads

d2w

dz2
+
z − q + εz−1

z2
w = 0 . (3.4.81)

This already takes the normal form of the semiclassical BPZ equation (3.3.189) and we imme-
diately read off the dictionary:

L1 = 2i ,

L2 = 2i
√
ε ,

u = −q ,
(3.4.82)

where
u = lim

b→0
b2Λ2

2∂Λ2
2

log 1
2
F 1

2

(
α; Λ2

1Λ2
2

)
=

1

4
− a2 +O(L2

1L
2
2) (3.4.83)

as in (3.3.189). This relation can be inverted to find a in terms of the parameters of the
DRDCHE: we denote this by a(q). Near z = 0 we denote the two linearly independent solutions
to (3.4.81) by

e2i
√
ε/zz3/4HeunDRDC(q, ε;

√
z) ,

e−2i
√
ε/zz3/4HeunDRDC(q, e2πiε;

√
z) .

(3.4.84)
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The DRDC Heun function has a simple asymptotic expansion around z = 0:

HeunDRDC(q, ε;
√
z) ∼ 1−

3
16

+ q

i
√
ε

√
z +O(z) . (3.4.85)

Note that in the expansion, z appears with a square-root, and therefore mapping z → e2πiz
gives another solution. Comparing with the semiclassical conformal blocks in subsection 3.3.6,
we identify

e2i
√
ε/zz3/4HeunDRDC(q, ε;

√
z) = zL

1/2
2 1

2
E (+)

1
2

(
a a2,1 ;−4L2

2,

√
z

L2

)
,

e−2i
√
ε/zz3/4HeunDRDC(q, e2πiε;

√
z) = zL

1/2
2 1

2
E (−)

1
2

(
a a2,1 ;−4L2

2,

√
z

L2

)
.

(3.4.86)

Around z =∞ we have the two linearly independent solutions

e2i
√
zz1/4HeunDRDC(q, ε; (εz)−

1
2 ) ,

e−2i
√
zz1/4HeunDRDC(q, ε;

(
e2πiεz

)− 1
2 ) ,

(3.4.87)

which we identify with the conformal blocks

e2i
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√
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e2πiεz
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√
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(3.4.88)

Connection formulae

The connection formula (3.3.195) from 0 to ∞ in terms of the DRDC Heun functions is

e2i
√
ε/zz3/4HeunDRDC(q, ε;
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=
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−i
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√
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(
e2πiεz

)− 1
2 ) ,

(3.4.89)
where the quantities a(q) and F are computed as explained in Appendix C.
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Chapter 4

Heun equations in gravity: perturbations
of Kerr black holes

4.1 Introduction and outlook

In this chapter we apply the exact results for the connection coefficients of the Heun equations
derived in the previous chapter to linear perturbations of a Kerr black hole. The wave equation
satisfied by such perturbations is separable, and reduces to two ODEs for its radial and angular
dependence. The radial equation is the celebrated Teukoslky equation [107]. Both radial and
angular ODEs have the same singularity structure of the confluent Heun equation analyzed in
the previous section. This allows us to derive exact expression for relevant physical observables
in terms of Liouville CFT objects.

A similar perspective has been analyzed in [108, 109, 110, 111] where it was suggested
that some physical properties of black holes, such as their greybody factor and quasinormal
modes, can be studied in a particular regime in terms of Painlevé equations. Numerical checks
appeared in [112, 113]. A decisive step forward in the quasinormal mode problem has been
taken in [77], where a different approach making use of the Seiberg-Witten quantum curve of
an appropriate supersymmetric gauge theory has been advocated to justify their spectrum and
whose evidence was also supported by comparison with numerical analysis of the gravitational
equation (see also [114, 115] for further developments). This view point has been further
analysed in [83, 84], where the context is widely generalized to D-branes and other types of
gravitational backgrounds in various dimensions. From the AGT dual CFT2 viewpoint, the
gauge theoretical approach corresponds to the large Virasoro central charge limit, instead of
the c = 1 limit relevant for Painlevé equations. It would be interesting to explore the relation
between the c = 1 and c =∞ approaches (see [116] for recent interesting developments).

The large c CFT theoretical approach has the advantage of being well suited for computing
connection coefficients, as it has been done in the previous chapter.

In what follows we perform the study of the greybody factor of the Kerr black hole at
finite frequency for which we give an exact formula. This reduces to the well-known result of
Maldacena and Strominger [117] in the zero frequency limit and in the semiclassical regime
reproduces the results computed via standard WKB approximation in [118].

By using the explicit solution of the connection problem, we also provide a proof of the
exact quantization of Kerr black hole quasinormal modes proposed in [77]. By solving the
angular Teukolsky equation, we prove the analogue quantization condition on the corresponding
parameters of the spin-weighted spheroidal harmonics.

Finally, we discuss the use of the precise asymptotics of our solution to determine the tidal
deformation profile in the far away region of the Kerr black hole and compare it to recent results
on the associated Love numbers in the static [119] and quasi-static [120, 121] regimes. We

77



observe that our method naturally distinguishes the source and response terms in the solution
without needing analytic continuation in the angular momentum [122, 123] and provides an
alternative regularization procedure for the computation of static Love numbers.

4.2 Perturbations of Kerr black holes
The Kerr metric describes the spacetime outside of a stationary, rotating black hole in asymp-
totically flat space. In Boyer-Lindquist coordinates it reads:

ds2 =−
(

∆− a2 sin2 θ

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2 +

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θ dφ2

− 2a sin2 θ(r2 + a2 −∆)

Σ
dt dφ ,

(4.2.1)

where
Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 . (4.2.2)

The horizons are given by the roots of ∆:

r± = M ±
√
M2 − a2 . (4.2.3)

Two other relevant quantities are the Hawking temperature and the angular velocity at the
horizon:

TH =
r+ − r−
8πMr+

, Ω =
a

2Mr+

. (4.2.4)

Perturbations of the Kerr metric by fields of spin s = 0,−1,−2 are described by the Teukolsky
equation [107], who found that an Ansatz of the form

Φs = eimφ−iωtSλ,s(θ, aω)Rs(r) . (4.2.5)

permits a separation of variables of the partial differential equation. One gets1 the following
equations for the radial and the angular part (see for example [18] eq.25):

∆
d2R

dr2
+ (s+ 1)

d∆

dr

dR

dr
+

(
K2 − 2is(r −M)K

∆
− Λλ,s + 4isωr

)
R = 0 ,

∂x(1− x2)∂xSλ +

[
(cx)2 + λ+ s− (m+ sx)2

1− x2
− 2csx

]
Sλ = 0 .

(4.2.6)

Here x = cos θ, c = aω and

K = (r2 + a2)ω − am, Λλ,s = λ+ a2ω2 − 2amω . (4.2.7)

λ has to be determined as the eigenvalue of the angular equation with suitable boundary
conditions imposing regularity at θ = 0, π. In general no closed-form expression is known, but
for small aω it is given by λ = `(` + 1) − s(s + 1) + O(aω). We give a way to calculate it to
arbitrary order in aω in subsection 4.4.3.
For later purposes it is convenient to write both equations in the form of a Schrödinger equation.
For the radial equation we define

z =
r − r−
r+ − r−

, ψ(z) = ∆(r)
s+1

2 R(r) . (4.2.8)

1Dropping the s subscript to ease the notation
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With this change of variables the inner and outer horizons are at z = 0 and z = 1, respectively,
and r →∞ corresponds to z →∞. We obtain the differential equation

d2ψ(z)

dz2
+ Vr(z)ψ(z) = 0 (4.2.9)

with potential

Vr(z) =
1

z2(z − 1)2

4∑
i=0

Âri z
i . (4.2.10)

The coefficients Âri depend on the parameters of the black hole and the frequency, spin and
angular momentum of the perturbation. Their explicit expression is given in Appendix E.
For the angular part instead we define

z =
1 + x

2
, y(z) =

√
1− x2

Sλ
2
. (4.2.11)

After this change of variables, θ = 0 corresponds to z = 1, and θ = π to z = 0. The equation
now reads

d2y(z)

dz2
+ Vang(z)y(z) = 0 , (4.2.12)

with potential

Vang(z) =
1

z2(z − 1)2

4∑
i=0

Âθi z
i . (4.2.13)

Again, we give the explicit expressions of the coefficients Âθi in Appendix E. When written
as Schrödinger equations, it is evident that the radial and angular equations share the same
singularity structure. They both have two regular singular points at z = 0, 1 and an irregular
singular point of Poincaré rank one at z = ∞. This is precisely the confluent Heun equation
in its normal form. Accordingly, parameters in Vr and Vang can be matched with the ones
appearing in equation (3.3.82).

4.3 The dictionary with CFT
We now match parameters in the radial and angular equation with the ones appearing in the
semiclassical BPZ equation (3.3.82). Writing down a dictionary between Liouville CFT and
the gravitational problem will allow us to compute exact expression for observables related to
perturbations of the Kerr background.

4.3.1 The radial dictionary

Comparing (4.2.10) with (3.3.82) we find the following eight dictionaries between the parameters
of the radial equation in the black hole problem and the CFT2:

u = −λ− s(s+ 1) + 8M2ω2 − a2ω2 + (2Mω2 + isω)(r+ − r−) ,

θa0 = −iω −mΩ

4πTH
+ 2iMω +

s

2
,

θ′a1 = −iω −mΩ

4πTH
− s

2
,

θ′′m3 = 2iMω − s ,
θ′′L = −2iω(r+ − r−) .

(4.3.1)

2We call here m3 = bµ the semiclassical parameter of the irregular field instead of m as in the previous
chapter to avoid confusion with the projection of the angular momentum m.
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where θ, θ′, θ′′ = ±1. We will make the following choice for the dictionary from now on:

u = −λ− s(s+ 1) + 8M2ω2 − a2ω2 + (2Mω2 + isω)(r+ − r−) ,

a0 = −iω −mΩ

4πTH
+ 2iMω +

s

2
,

a1 = −iω −mΩ

4πTH
− s

2
,

m3 = 2iMω − s ,
L = −2iω(r+ − r−) .

(4.3.2)

which corresponds to θ = θ′ = θ′′ = +1. These 8 = 23 dictionaries reflect the symmetries of
the equation, which is invariant independently under a0 → −a0, a1 → −a1 and (m3,Λ) →
−(m3,Λ). Using AGT this dictionary gives the following masses in the gauge theory (see
Appendix C for details):

m1 = a0 + a1 = −iω −mΩ

2πTH
+ 2iMω ,

m2 = a1 − a0 = −2iMω − s ,
m3 = 2iMω − s .

(4.3.3)

This is consistent with what has been found in [77]. For s = 0 the values are purely imaginary
and correspond to physical Liouville momenta. For s 6= 0 the conformal block gets analytically
continued.

4.3.2 The angular dictionary

Comparing instead with the Âθi in (E.0.4) we find the following eight dictionaries between the
parameters of the angular equation in the black hole problem and the CFT:

u = −c2 − s(s+ 1) + 2cs− λ ,

θa0 =

(
−m− s

2

)
,

θ′a1 =

(
−m+ s

2

)
,

θ′′m3 = −s ,
θ′′L = 4c ,

(4.3.4)

where again θ, θ′, θ′′ = ±1 and our choice from here on will be θ = θ′ = θ′′ = +1, i.e.:

u = −c2 − s(s+ 1) + 2cs− λ ,

a0 =

(
−m− s

2

)
,

a1 =

(
−m+ s

2

)
,

m3 = s ,

L = 4c ,

(4.3.5)

Using AGT this dictionary gives the following masses in the gauge theory (see Appendix C for
details):

m1 = a0 + a1 = −m,

m2 = a1 − a0 = −s ,
m3 = s .

(4.3.6)
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Again consistently with [77].

4.4 Applications to the black hole problem

There are several interesting physical quantities in the black hole problem which are governed
by the Teukolsky equation. Having the explicit expression for the connection coefficients allows
us to compute them exactly. We turn to this now.

4.4.1 The greybody factor

While all our analysis has been for classical black holes, it is known that quantum black holes
emit thermal radiation from their horizons [124]. However, the spacetime outside of the black
hole acts as a potential barrier for the emitted particles, so that the emission spectrum as
measured by an observer at infinity is no longer thermal, but is given by σ(ω)

exp ω−mΩ
TH

−1
, where

σ(ω) is the so-called greybody factor. Incidentally, it is the same as the absorption coefficient
of the black hole, which tells us the ratio of a flux of particles incoming from infinity which
penetrates the potential barrier and is absorbed by the black hole [124] [125]. More precisely,
the radial equation with s = 0 has a conserved flux, given by the "probability flux" when
written as a Schrödinger equation: φ = Imψ†(z)∂zψ(z) for z on the real line. The absorption
coefficient is then defined as the ratio between the flux φabs absorbed by the black hole (ingoing
at the horizon) and the flux φin incoming from infinity. For non-zero spin, the potential (4.2.10)
becomes complex, and the flux is no longer conserved. In that case the absorption coefficient
can be computed using energy fluxes [126], but for simplicity we stick here to s = 0.

The exact result

On physical grounds we impose the boundary condition that there is only an ingoing wave at
the horizon:

R(r → r+) ∼ (r − r+)
−iω−mΩ

4πTH , (4.4.1)

so the wavefunction near the horizon is given by

ψ(z) = (1− z)
1
2

+a1 (1 +O(z − 1)) , (4.4.2)

with a2 = −iω−mΩ
4πTH

and recall that the time-dependent part goes like e−iωt. This boundary
condition is independent of whether ω − mΩ is positive or negative: an observer near the
horizon always sees an ingoing flux into the horizon, but when ω − mΩ < 0 it is outgoing
according to an observer at infinity. This phenomenon is known as superradiance [127]. In any
case, this gives the flux

φabs = Ima1 (4.4.3)

ingoing at the horizon. Using our connection formula (3.3.89), we find that near infinity the
wavefunction behaves as

ψ(z) = (z − 1)
1
2

+a1 (1 +O(1− z)) = C−`mωe
Lz
2 z−m3

(
1 +O(z−1)

)
+ C+

`mωe
−Lz

2 zm3
(
1 +O(z−1)

)
(4.4.4)

where

C±`mω =
∑
σ=±

(∓L)−
1
2
±m3+σae−

σ
2
∂aF± 1

2
∂m3FΓ (1− 2σa) Γ (−2σa) Γ (1 + 2a1)

Γ
(

1
2

+ a1 − σa+ a0

)
Γ
(

1
2

+ a1 − σa− a0

)
Γ
(

1
2
− σa±m3

) . (4.4.5)
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At infinity, the ingoing part of the wave is easy to identify: recalling that Λ = −2iω(r+ − r−)
it corresponds to the positive sign in the exponential. So the flux incoming from infinity is

φin =

(
Im
L

2

) ∣∣C−`mω∣∣2 = −1

2

∣∣∣∣∣∑
σ=±

L−m3+σae−
σ
2
∂aF− 1

2
∂m3FΓ (1− 2σa) Γ (−2σa) Γ (1 + 2a1)

Γ
(

1
2

+ a1 − σa+ a0

)
Γ
(

1
2

+ a1 − σa− a0

)
Γ
(

1
2
− σa−m3

)∣∣∣∣∣
2

.

(4.4.6)
The minus sign comes from the fact that we have simplified Λ and we have ImL = −|L|. Note
that also the flux at the horizon is negative (for non-superradiant modes). So the full absorption
coefficient/greybody factor, defined as the flux going into the horizon normalized by the flux
coming in from infinity is:

σ =
φabs
φin

=
−Im2a1∣∣∣∣∣∑

σ=±

L−m3+σae−
σ
2
∂aF− 1

2
∂m3FΓ (1− 2σa) Γ (−2σa) Γ (1 + 2a1)

Γ
(

1
2

+ a1 − σa+ a0

)
Γ
(

1
2

+ a1 − σa− a0

)
Γ
(

1
2
− σa−m3

)∣∣∣∣∣
2 . (4.4.7)

This is the exact result, given as a power series in L. Substituting the dictionary with gravity
we get

σ =
φabs
φin

=
ω −mΩ

2πTH
×

×

∣∣∣∣∣∣Γ(1 + 2a)Γ(2a)Γ(1− iω−mΩ
2πTH

)(−2iω(r+ − r−))−a−2iMωe−iω(r+−r−)e−
1
2
∂aF+ 1

2
∂m3F

Γ
(

1
2
− 2iMω + a

)
Γ
(

1
2
− iω−mΩ

2πTH
+ 2iMω + a

)
Γ
(

1
2
− 2iMω + a

) + (a→ −a)

∣∣∣∣∣∣
−2

.

(4.4.8)
Here F (L, a0, a1,m3) is the instanton part of the NS free energy. We stress that to write this
result fully in terms of the parameters of the black hole problem using the dictionary (4.3.2), one
has to invert the Matone relation u = 1

4
−a2 +L∂LF to obtain a(u), which can be done order by

order in L. In the literature, the absorption coefficient for Kerr black holes has been calculated
using various approximations. As a consistency check, we show that our result reproduces the
known results in the appropriate regimes.

Comparison with asymptotic matching

In [117], the absorption coefficient is calculated via an asymptotic matching procedure. They
work in a regime in which aω � 1 such that the angular eigenvalue λ ≈ `(` + 1), and solve
the Teukolsky equation for s = 0 asymptotically in the regions near and far from the outer
horizon. Then one also takes Mω � 1 such that there exists an overlap between the far and
near regions and one can match the asymptotic solutions. For us these limits imply that also
|L| = 4ω

√
M2 − a2 � 1, so we expand our exact transmission coefficient to lowest order in aω,

Mω and L. Since from the dictionary (4.3.2) u = 1
4
− a2 +O(L) = 1

4
+ `(`+ 1) +O(aω,Mω),

in this limit we have a = ` + 1
2
. Then the second term in the denominator of (4.4.7) which

contains La vanishes for L → 0 while the first one survives and passes to the numerator. The
NS instanton partition function F also vanishes, F (L→ 0) = 0. (4.4.8) then becomes

σ ≈ ω −mΩ

2πTH
(2ω(r+ − r−))2`+1

∣∣∣∣∣∣
Γ (`+ 1) Γ

(
`+ 1− iω−mΩ

2πTH

)
Γ (`+ 1)

Γ(2`+ 2)Γ(2`+ 1)Γ(1− iω−mΩ
2πTH

)

∣∣∣∣∣∣
2

. (4.4.9)
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Using the relation Γ(`+1)
Γ(2`+2)

=
√
π

22`+1Γ(`+ 3
2

)
(and sending i → −i inside the modulus squared) we

reduce precisely to the result of [117] (eq. 2.29):

σ ≈ ω −mΩ

2TH

(r+ − r−)2`+1ω2`+1

22`+1

∣∣∣∣∣∣
Γ(`+ 1)Γ

(
`+ 1 + iω−mΩ

2πTH

)
Γ
(
`+ 3

2

)
Γ(2`+ 1)Γ

(
1 + iω−mΩ

2πTH

)
∣∣∣∣∣∣
2

, (4.4.10)

which is valid for Mω, aω � 1.

Comparison with semiclassics

We now show that the exact absorption coefficient reduces to the semiclassical result obtained
via a standard WKB analysis of the equation

ε21∂
2
zψ(z) + V (z)ψ(z) = 0 . (4.4.11)

where we have introduced the small parameter ε1 which plays the role of the Planck constant
to keep track of the orders in the expansion. For the Teukolsky equation (which has ε1 = 1) the
semiclassical regime is the regime in which ` � 1. Following [118], we also take Mω � 1 and
s = 0 such that there are two zeroes of the potential between the outer horizon and infinity for
real values of z which we denote by z1 and z2 with z2 > z1, between which there is a potential
barrier for the particle (V (z) becomes negative, notice the "wrong sign" in front of the second
derivative). Without these extra conditions, the potential generically becomes complex, or
does not form a barrier. The main difference with the regime used for the asymptotic matching
procedure in the previous section is that there we worked to leading order in Mω, aω. Now we
still assume them to be small but keep all orders, while working to first subleading order in ε1.

Figure 4.1: Forms of the potential −V (z) for M = 1, a = 0.5, λ = 10, m = 0 , s = 0, and ω = 0.01

(left) and ω = 1 (right). We see that for Mω not small enough, the potential does not form a barrier.

The standard WKB solutions are

ψ(z) ∝ V (z)−
1
4 exp

(
± i

ε1

∫ z

z∗

√
V (z′)dz′

)
, (4.4.12)

where z∗ is some arbitrary reference point, usually taken to be a turning point of the potential,
here corresponding to a zero. The absorption coefficient is given by the transmission coefficient
from infinity to the horizon and captures the tunneling amplitude through this potential barrier.
It is simply given by

σ ≈ exp

(
2i

ε1

∫ z2

z1

√
V (z′)dz′

)
= exp

(
− 2

ε1

∫ z2

z1

√
|V (z′)|dz′

)
. (4.4.13)
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On the other hand it is known that in the semiclassical limit the potential of the BPZ equation
reduces to the Seiberg-Witten differential of the AGT dual gauge theory [69], which for us is
SU(2) gauge theory with Nf = 3: V (z)→ −φ2

SW (z). The integral between the two zeroes then
corresponds to half a B-cycle, so we identify

σ ≈ exp

(
− 2

ε1

∫ z2

z1

φSW (z′)dz′
)

= exp

(
− 1

ε1

∮
B

φSW (z′)dz′
)

=: exp

(
−aD
ε1

)
, (4.4.14)

where we have chosen an orientation of the B-cycle. Our exact absorption coefficient reduces
to this expression in the semiclassical limit ε1 → 0.

4.4.2 Quantization of quasinormal modes

With the explicit expression of the connection matrix (3.3.89) in our hands we can extract
the quantization condition for the quasinormal modes. The correct boundary conditions for
quasinormal modes is only an ingoing wave at the horizon and only an outgoing one at infinity
(see e.g. [18], eq. (80)), that is

RQNM(r → r+) ∼ (r − r+)
−iω−mΩ

4πTH
−s

RQNM(r →∞) ∼ r−1−2s+2iMωeiωr .
(4.4.15)

In terms of the function ψ(z) satisfying the Teukolsky equation in Schrödinger form:

ψQNM(z → 1) ∼ (z − 1)
1
2

+a1 ,

ψQNM(z →∞) ∼ e−Lz/2 (Lz)−m3 .
(4.4.16)

However, imposing the ingoing boundary condition at the horizon and using the connection
formula, we get that near infinity

ψQNM(z →∞) = (z − 1)
1
2

+a1 (1 +O(1− z)) = C−`mωe
Lz
2 z−m3 (1 +O(z−1)) + C+

`mωe
−Lz

2 zm3 (1 +O(z−1))

(4.4.17)
which contains both an ingoing an an outgoing wave at infinity. In order to impose the correct
boundary condition (4.4.16) we need to impose that the coefficient of the ingoing wave vanishes:

C−`mωn =
∑
σ=±

L−
1
2
−m3+σae−

σ
2
∂aF− 1

2
∂m3FΓ (1− 2σa) Γ (−2σa) Γ (1 + 2a1)

Γ
(

1
2

+ a1 − σa+ a0

)
Γ
(

1
2

+ a1 − σa− a0

)
Γ
(

1
2
− σa−m3

) = 0 (4.4.18)

This gives ∑
σ

Lσae−
σ
2
∂aFΓ (1− 2σa) Γ (−2σa)

Γ
(

1
2

+m1 − σa
)

Γ
(

1
2

+m2 − σa
)

Γ
(

1
2
−m3 − σa

) = 0 (4.4.19)

Note that

Γ (2a) Γ (1 + 2a)

Γ (−2a) Γ (1− 2a)

Γ
(

1
2
−m3 − a

)
Γ
(

1
2
−m3 + a

) 2∏
i=1

Γ
(

1
2

+mi − a
)

Γ
(

1
2

+mi + a
) = e−iπ

(
Γ (1 + 2a)

Γ (1− 2a)

)2 Γ
(

1
2
−m3 − a

)
Γ
(

1
2
−m3 + a

) 2∏
i=1

Γ
(

1
2

+mi − a
)

Γ
(

1
2

+mi + a
) =

= exp

[
−iπ + 2 log

Γ (1 + 2a)

Γ (1− 2a)
+ log

Γ
(

1
2
−m3 − a

)
Γ
(

1
2
−m3 + a

) +
2∑
i=1

log
Γ
(

1
2

+mi − a
)

Γ
(

1
2

+mi + a
)] .

(4.4.20)
Including also the L factor, we identify the exponent with (see conventions in [77])

−2a logL+ 2 log
Γ (1 + 2a)

Γ (1− 2a)
+ log

Γ
(

1
2
−m3 − a

)
Γ
(

1
2
−m3 + a

) +
2∑
i=1

log
Γ
(

1
2

+mi − a
)

Γ
(

1
2

+mi + a
) = ∂aF1−loop .

(4.4.21)
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The instanton and one loop part combine to give the full NS free energy, and hence (4.4.18)
can be conveniently rewritten as

1− e∂aF = 0⇒ ∂aF = 2πin , n ∈ Z . (4.4.22)

To solve for the quasinormal mode frequencies, we need to invert the relation u = 1
4
−a2−L∂LF

to obtain a(u). Then the quantization condition for the quasinormal mode frequencies that we
have derived reads

∂aF
(
−2iω(r+ − r−), a(u),−iω −mΩ

2πTH
+ 2iMω,−2iMω − s,−2iMω + s, 1

)
= 2πin , n ∈ Z ,

(4.4.23)
This gives an equation that is solved for a discrete set of ωn, in agreement with [77]3.

4.4.3 Angular quantization

Yet another application of the connection formulae is the computation of the angular eigenvalue
λ. To this end, we impose regularity of the angular eigenfunctions at z = 0, 1. According to
the angular dictionary (4.3.5),

1± 2a0

2
=

1

2
∓ m− s

2
,

1± 2a1

2
=

1

2
∓ m+ s

2
, (4.4.24)

therefore, according to (4.2.11) the behavior of Sλ as z → 0 is given by

Sλ(z → 0) ∝ z∓
m−s

2 . (4.4.25)

Since λs,m = λ∗s,−m, λ−s,m = λs,m + 2s [128], we can restrict without loss of generality to the
case m,−s ≥ 0. Regularity of Sλ as z → 0 requires the boundary condition

ym>s(z → 0) =' z
1
2

+m−s
2 . (4.4.26)

Therefore near z → 1,

e
1
2
∂a0Fym>s(z → 1) ' e

1
2
∂a1FΓ(−m− s)Γ(1 +m− s)
Γ(1

2
− a− s)Γ(1

2
+ a− s)

(1− z)
1
2

+m+s
2 +

e−
1
2
∂a0FΓ(m+ s)Γ(1 +m− s)

Γ(1
2
− a+m)Γ(1

2
+ a+m)

(1− z)
1
2
−m+s

2 .

(4.4.27)
Let us start by assuming m + s > 0. Then the second term in (4.4.27) has a pole at z = 1
for generic values of a, and the first gamma function is divergent as it stands. However both
divergences are cured by imposing that

a = `+
1

2
, (4.4.28)

for some positive integer ` ≥ m ≥ −s. Analogously if m + s ≤ 0, regularity is ensured by
imposing a = ` + 1

2
with ` ≥ m ≥ −s. Therefore in general the quantization condition for the

angular eigenvalue is

a(u) = `+
1

2
, ` ≥ max(m,−s) . (4.4.29)

Again, a is obtained by inverting the expression u = 1
4
−a2 + Λ∂ΛF inst order by order in Λ. Let

us denote by
λ0 = λ(Λ = 0) = `(`+ 1)− s(s+ 1) . (4.4.30)

Then the above quantization condition for the angular eigenvalue λ can be more conveniently
written as

λ− λ0 = 2cs− c2 + L∂LF , (4.4.31)
which is in agreement with the result already obtained in [77].

3In order to match with [77], it is important to notice that they use the variable −ia instead of a, and a
sign difference in the definition of m3. Moreover, their ∂aF is shifted by a factor of −iπ with respect to ours.

85



4.4.4 Love numbers

Applying an external gravitational field to a self-gravitating body generically causes it to de-
form, much in the same way as an external electric field polarizes a dielectric material. The
response of the body to the external gravitational tidal field is captured by the so-called tidal
response coefficients or Love numbers, named after A. E. H. Love who first studied them in
the context of the Earth’s response to the tides [129]. In general relativity, the tidal response
coefficients are generally complex, and the real part captures the conservative response of the
body, whereas the imaginary part captures dissipative effects. There is some naming ambiguity
where sometimes only the real, conservative part is called the Love number, whereas sometimes
the full complex response coefficient is called Love number. For us the Love number will be
the full complex response coefficient. For four-dimensional Kerr black holes, the conservative
(real part) of the response coefficient to static external perturbations has been found to van-
ish [119, 121]. Moreover, Love numbers are measurable quantities that can be probed with
gravitational wave observations [130, 131]. Using our conformal field theory approach to the
Teukolsky equation we compute the Love number of a slowly rotating Kerr black hole at linear
order in the frequency of the perturbation. The extension of our computation to higher orders
is straightforward.

Definition of Love number and the intermediate region

For the definition of Love numbers we follow [121] and [119], to which we refer for a more
complete introduction. In the case of a static external perturbation (ω = 0), one imposes the
ingoing boundary condition on the radial part of the perturbing field at the horizon, which then
behaves near infinity as

R(r →∞) = Ar`−s(1 +O(r−1)) +Br−`−s−1(1 +O(r−1))

= Ar`−s

[
(1 +O(r−1)) + k

(s)
`m

(
r

r+ − r−

)−2`−1

(1 +O(r−1))

]
(4.4.32)

for some constants A and B. The Love number k(s)
`m is then defined as the coefficient of (r/(r+−

r−))−2`−1 (note that this differs from the definition in [121] where they define it as the coefficient
of (r/2M)−2`−1 instead). In the non-static case however, the definition of Love number is less
clear, since the behaviour of the radial function at infinity is now qualitatively different from
(4.4.32): it is oscillatory (cf. (4.4.4)) due to the term ∝ ω2 in the potential (E.0.3). For
small frequencies we can however define an intermediate regime r � M , rω � 1 in which the
multipole expansion (4.4.32) is still valid and we can read off the Love numbers in the same
way as in the static case. Recall the Teukolsky equation written as a Schrödinger equation:

d2ψ(z)

dz2
+ VCFT (z)ψ(z) = 0 (4.4.33)

with the potential

VCFT (z) =
u− 1

2
+ a2

0 + a2
1

z(z − 1)
+

1
4
− a2

1

(z − 1)2
+

1
4
− a2

0

z2
+
m3L

z
− L2

4
. (4.4.34)

The intermediate regime corresponds to z � 1, Lz � 1. Expanding in these variables the
potential reads:

VCFT (z)

L2
=

u

L2z2

(
1 +O(z−1, Lz)

)
. (4.4.35)

We see that in this regime the leading term in the potential is the one ∝ 1/z2, and the multipole
expansion holds. In a sense we are taking z to be big enough to be far from the horizon, but
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not so far as to reach the oscillatory region at infinity, as already mentioned in [120]. In the
static case this intermediate region where the multipole expansion is valid extends all the way
to infinity. This is the so called near zone approximation (see for example [132]). On the CFT
side, this is what we called intermediate region in the previous chapter, and the corresponding
conformal block is given by (3.3.48). For the sake of concreteness, here we will compute the
relevant conformal block explicitly. To do so we need to project the irregular state in the
module |∆〉, where ∆ ∼ 1

b2

(
1
4
− a2

)
is fixed by the dictionary and the Matone relation. For

later convenience we define the projected state

〈∆,Λ, µ| = 〈Λ, µ|Π∆ , (4.4.36)

where Π∆ is the projector on the Verma module |∆〉. Recall that bµ = m3 as b goes to zero.

4.4.5 Slowly rotating Kerr Love numbers

Let us compute the Kerr Love numbers up to first order in Mω ∼MΩ. In order to do this we
have to consider only the first instanton correction since Λ ∝Mω. The wavefunction up to one
instanton can be derived from the conformal blocks in the intermediate regime. Schematically,

ψ(z) ∼ 〈∆,Λ, µ|φ(z)V1(1)|∆0〉
〈∆,Λ, µ|V1(1)|∆0〉

'
(
〈∆|+ µΛ

2∆
〈∆|L1

)
φ(z)V1(1)|∆0〉(

〈∆|+ µΛ
2∆
〈∆|L1

)
V1(1)|∆0〉

. (4.4.37)

The key observation is that the conformal blocks of the 4 point function 〈∆|φ(z)V1(1)|∆0〉 are
just given by hypergeometric functions. Imposing ingoing boundary condition at the horizon,
this gives the following wavefunction in the intermediate regime:

ψ(z) =

[
1 +

m3L
1
2
− 2a2

((
1− 1

z

)
∂1/z + z − 1

2

)]∑
θ=±

Ma1+aθz
1
2
−θa
(

1− 1

z

) 1
2

+a1

×

× 2F1

(
1

2
+ a1 + θa− a0,

1

2
+ a1 + θa+ a0; 1 + 2θa;

1

z

)
+O

(
Λ2
)
.

(4.4.38)

Here Ma1+aθ are just hypergeometric connection coefficients. Note that the first instanton
contributes at this order only if s 6= 0 since for zero spin m3L ∼ O(M2ω2). For a slowly
rotating black hole the connection coefficients start with O((Mω)0) = O((MΩ)0) terms. Indeed
substituting the dictionary we find

Ma1+a+ =
Γ(−1− 2`− 2∆`)Γ(1− 2iω−mΩ

4πTH
− s)

Γ(−`−∆`− 2iω−mΩ
4πTH

+ 2iMω)Γ(−`−∆`− 2iMω − s)
=

=
`!(`+ s)!

(2`+ 1)!
(−1)s+1

(2iMω)(−2iω−mΩ
4πTH

+ 2iMω)

2∆`
+O(Mω) ,

Ma1+a− =
Γ(1 + 2`)Γ(1− s)

Γ(`+ 1)Γ(`− s+ 1)
+O(Mω) ,

(4.4.39)

where a = `+ 1/2 + ∆`. It turns out that the first correction to a vanishes, so ∆` ∼ O(M2ω2).
Also note that all the Gamma functions are finite since s ≤ 0. Plugging in the dictionary and
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expanding the hypergeometrics gives

2F1

(
1

2
+ a1 + a− a0,

1

2
+ a1 + a+ a0; 1 + 2a;

1

z

)
' 2F1

(
1 + `− s− 2iMω, 1 + `− 2i

ω −mΩ

4πTH
+ 2iMω; 2 + 2`;

1

z

)
,

2F1

(
1

2
+ a1 − a− a0,

1

2
+ a1 − a+ a0; 1− 2a;

1

z

)
'

2∑̀
n=0

(−`− s− 2iMω)(n)(−`− 2iω−mΩ
4πTH

+ 2iMω)(n)

(−2`)(n)

z−n

n!
+

+
Γ(−2`− 2∆`)Γ(1 + `− s− 2iMω)Γ(1 + `− 2iω−mΩ

4πTH
+ 2iMω)

Γ(−`− s− 2iMω)Γ(−`− 2iω−mΩ
4πTH

+ 2iMω)Γ(2`+ 2)
z−2`−1×

× 2F1

(
1 + `− s− 2iMω, 1 + `− 2i

ω −mΩ

4πTH
+ 2iMω; 2 + 2`;

1

z

)
.

(4.4.40)
Note that

Γ(−2`− 2∆`)Γ(1 + `− s− 2iMω)Γ(1 + `− 2iω−mΩ
4πTH

+ 2iMω)

Γ(−`− s− 2iMω)Γ(−`− 2iω−mΩ
4πTH

+ 2iMω)Γ(2`+ 2)
Ma1+a− = −Ma1+a++O

(
(Mω)2

)
,

(4.4.41)
therefore at this order the hypergeometrics simplify one against the other up to a finite poly-
nomial, hence

ψ(z) =

[
1 +

m3L
1
2
− 2a2

((
1− 1

z

)
∂1/z + z − 1

2

)]
×

×Ma1+a−z
1
2

+a

(
1− 1

z

) 1
2

+a1 2∑̀
n=0

(−`− s− 2iMω)(n)(−`− 2iω−mΩ
4πTH

+ 2iMω)(n)

(−2`)(n)

z−n

n!
+O(M2ω2) .

(4.4.42)
The radial wavefunction is given by

R(r) = ∆−
s+1

2 (r)ψ(z) , (4.4.43)

where

z =
r

2M
+O

(
M2Ω2

)
, ∆(r)−

s+1
2 = (r+ − r−)−s−1z−s−1

(
1− 1

z

)− s+1
2

. (4.4.44)

To find the Love numbers, we need the ratio between the coefficient of r−`−s−1 (the response)
and the coefficient of r`−s (the source). The term coming from the first instanton in (4.4.42)
will not contribute at this order. Indeed this term gives

ψ(z) ⊃ −4iM2ωs

`(`+ 1)

((
1− 1

z

)
∂1/z + z − 1

2

)
Ma2+a−z

`+1

(
1− 1

z

) 1−s
2

`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)

z−n

n!
+O(M2ω2) =

=
−4iM2ωs

`(`+ 1)
Ma2+a−z

`+1

(
1− 1

z

) 1−s
2
(
−z`+

2`+ s

2
+

(
1− 1

z

)
∂1/z

) `+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)

z−n

n!
+O(M2ω2) ,

(4.4.45)
where by ψ(z) ⊃ . . . we mean that we are considering only a subset of the terms appearing in
ψ(z). After taking into account the factor of ∆ from (4.4.43), one sees that this contribution
to R(r) does not contain the power that we are interested in. Focusing on the zero instanton
contribution, the (1 − 1/z) prefactor has an O(Mω) term in the exponent that has to be
expanded, resulting in

R(r) ⊃ i
ω −mΩ

4πTH

Ma1+a−

(r+ − r−)s+1

r`−s

((2M)`+1

(
1 + s

2M

r
+
s(s+ 1)

2

(
2M

r

)2
)
∞∑
k=1

2∑̀
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)

(
r

2M

)−n−k
n!k

.

(4.4.46)
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This term contains the correct power, with coefficient

R(r) ⊃
Ma1+a−

(r+ − r−)s+1

r`−s

((2M)`+1
i
ω −mΩ

4πTH

( r

2M

)−2`−1
( `+s∑

n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`+ 1− n)
+

+ s
`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`− n)
+
s(s+ 1)

2

`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`− 1− n)

)
.

(4.4.47)

A surprising identity reveals that

`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`+ 1− n)
+ s

`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`− n)
+
s(s+ 1)

2

`+s∑
n=0

(−`− s)(n)(−`)(n)

(−2`)(n)n!(2`− 1− n)
=

=
(`+ s)! (`− s)! (`!)2

(2`)! (2`+ 1)!
(−1)s ,

(4.4.48)
therefore

R(r) ⊃
Ma1+a−

(r+ − r−)s+1

r`−s

(2M)`+1

[
1 + i

ω −mΩ

4πTH

( r

2M

)−2`−1 (`+ s)! (`− s)! (`!)2

(2`)! (2`+ 1)!
(−1)s

]
.

(4.4.49)
Noticing that 1/4πTH ' 2M finally gives the Love number

ksa ,m = 2iM (ω −mΩ) (−1)s
(`+ s)! (`− s)! (`!)2

(2`)! (2`+ 1)!
+O(M2ω2,M2Ω2,M2ωΩ) . (4.4.50)

This result matches with formula (6.17) in [121]. Note that the Love number remains purely
imaginary for a small frequency perturbation, and that it vanishes in the case of a static
perturbation of a Schwarzschild black hole.
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Chapter 5

Heun equations in holography:
perturbations of AdS black holes

5.1 Introduction

In this chapter we study the thermal two-point function in a holographic four-dimensional CFT1

[13, 134, 135] using the connection coefficients of Heun functions derived in chapter 3. Above
the Hawking-Page transition [14] this observable is computed by studying the wave equation on
the AdS-Schwarzschild background [15]. Finite temperature dynamics of CFTs is particularly
rich in d > 2, where propagation of energy is not fixed by symmetries. On the gravity side,
this is related to the presence of a propagating graviton in the spectrum of the theory, namely
gravity waves.2 On the field theory side, it is due to the fact that conformal symmetry is
finite-dimensional in d > 2. This richness comes at a price that even for the simplest finite
temperature observables no explicit solutions are available in d > 2.3 In this chapter we provide
the first example of such an explicit result. The thermal two-point function is computed by
studying the wave equation on the black hole background [103, 140, 141]. This equation is of
the Heun type [8, 4, 9], and the retarded two-point function is given in terms of its connection
coefficients. We reproduce the available perturbative results from the literature [142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 137] and make new predictions.

5.2 Holographic two-point function at finite temperature

5.2.1 Black hole

We consider a holographic conformal field theory at finite temperature. Above the Hawking-
Page transition [14], this theory is dual to a black hole in AdS [15]. In this paper we will
specialize to the case of AdS5, where the black hole metric is

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2
3. (5.2.1)

1We consider a finite-temperature CFT on the sphere, S1
β × S3, and on the plane, S1

β × R3. The former is
related to the black hole geometry, and the latter to the black brane. The requirement of being holographic
implies a large CFT central charge (cT � 1), and a large gap in the spectrum of higher spin single trace
operators (∆gap � 1) [133].

2Another characteristic feature of black holes in d > 2 is the existence of stable orbits [37, 136, 137].
3Here we refer to the black hole phase. For the thermal AdS phase some explicit results exist [138]. They

are also available in d ≤ 2, see e.g. [139].
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Setting the AdS radius to 1, the redshift factor takes the form

f(r) = r2 + 1− µ

r2

≡
(

1−
R2

+

r2

)
(r2 +R2

+ + 1), (5.2.2)

where the Schwarzschild radius is given by

R+ =

√√
1 + 4µ− 1

2
. (5.2.3)

The dimensionless parameter µ is related to the black hole mass M by

µ =
8GNM

3π
. (5.2.4)

We are interested in the two-point function of a scalar operator O(x) with dimension ∆,
dual to a massive scalar φ in the bulk with mass [156]

m =
√

∆(∆− 4). (5.2.5)

In order to compute this two-point function, we need to solve the wave equation on the black
hole background,

(�−m2)φ = 0. (5.2.6)

Expanding the solution into Fourier modes, we have

φ(t, r,Ω) =

∫
dω
∑
`,~m

e−iωtY`~m(Ω)ψω`(r). (5.2.7)

Our conventions for spherical harmonics Y`~m can be found in Appendix A of [24]. The wave
equation then takes the form (see [18] and references there)(

1

r3
∂r(r

3f(r)∂r) +
ω2

f(r)
− `(`+ 2)

r2
−∆(∆− 4)

)
ψω` = 0. (5.2.8)

We are interested in the retarded Green’s function, and therefore we impose ingoing boundary
conditions on the solution φ at the horizon,

ψin
ω`(r) = (r −R+)

− iω
2

R+

2R2
++1 + . . . (5.2.9)

The solution ψin behaves near the AdS boundary r →∞ as

ψin
ω`(r) = A(ω, `)(r∆−4 + . . .) + B(ω, `)(r−∆ + . . .). (5.2.10)

The two-point function is then the ratio of the response B(ω, `) to the source A(ω, `) [103],

GR(ω, `) =
B(ω, `)

A(ω, `)
. (5.2.11)

Our conventions for the thermal two-point function in the CFT dual are collected in Appendix
F. The wave equation takes a particularly convenient form under the transformations

z =
r2

r2 +R2
+ + 1

, (5.2.12)

ψω`(r) =

(
r3f(r)

dz

dr

)−1/2

χω`(z) . (5.2.13)
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We then obtain Heun’s differential equation in normal form,(
∂2
z +

1
4
− a2

1

(z − 1)2
−

1
2
− a2

0 − a2
1 − a2

t + a2
∞ + u

z(z − 1)
+

1
4
− a2

t

(z − t)2
+

u

z(z − t)
+

1
4
− a2

0

z2

)
χω`(z) = 0.

(5.2.14)

With parameters

t =
R2

+

2R2
+ + 1

, a0 = 0 , at =
iω

2

R+

2R2
+ + 1

a1 =
∆− 2

2
, a∞ =

ω

2

√
R2

+ + 1

2R2
+ + 1

,

u = −
`(`+ 2) + 2(2R2

+ + 1) +R2
+∆(∆− 4)

4(R2
+ + 1)

+
R2

+

1 +R2
+

ω2

4(2R2
+ + 1)

.

(5.2.15)

The purely ingoing solution behaves near the black hole horizon as

χin
ω`(z) = (t− z)

1
2
−at + ... . (5.2.16)

Close to the AdS boundary it takes the form

χin
ω`(z) ∝ A(ω, `)

( 1− z
1 +R2

+

) 1
2
−a1

+ B(ω, `)
( 1− z

1 +R2
+

) 1
2

+a1

+ . . . .

The problem of finding the response function (5.2.11) reduces to finding the connection formulae
for the Heun function.

5.2.2 Black brane

The black brane is dual to CFT on S1×R3, and can be obtained by taking the high-temperature
limit T → ∞ of the black hole, while keeping ω

T
≡ ω̂ and `

T
≡ |k| fixed. Here ω̂ and k are

the dimensionless energy and three-momentum of the resulting theory on S1 × R3 in units of
temperature. Recall that for the AdS-Schwarzschild black hole [15]

T =
1√
2π

√
1 + 4µ√

1 + 4µ− 1
, (5.2.17)

and the high-temperature limit corresponds to µ→∞.
In this way we get the map between the gauge theory and gravity parameters for the black

brane (to avoid clutter we switch from ω̂ to ω), see 5.2.18.

t =
1

2
, a0 = 0 , at =

iω

4π

a1 =
∆− 2

2
, a∞ =

ω

4π
,

u =
ω2 − 2k2

8π2
− 1

4
(∆− 2)2. .

(5.2.18)

Finally, we define the two-point function as follows,

Gbrane
R (ω, |k|) = lim

T→∞

GR(ωT, |k|T )

T 4a1
, (5.2.19)

see Appendix G for the detailed derivation.
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Figure 5.1: We plot the retarded two-point function Gbrane
R (ω, |k|), given by (5.3.5) and (5.3.7),

for |k| = 1, ∆ = 5/2, as a function of ω and the maximal number of instantons nmax in the
truncated sum (5.3.8). a) The real part of the retarded two-point function Re Gbrane

R (ω, 1).
b) The imaginary part of the retarded two-point function Im Gbrane

R (ω, 1). We set T = 1.
We also compare our results with the direct numerical solution of the differential equation
(we used NDSolve in Mathematica), see e.g. [157], and find beautiful agreement between the
two methods. An analogous plot can be generated for the |k|-dependence as well, and again
we observed perfect agreement between our formulas and the direct numerical solution of the
differential equation.

5.3 Exact thermal two-point function
From the gauge theory point of view, the parameters a0, a1, at, a∞ are related to the masses of
the hypermultiplets, t ∼ e−1/g2

YM is the instanton counting parameter, and u parameterizes the
moduli space of vacua. The latter is related to the VEV a of the scalar in the vector multiplet
via the (quantum) Matone relation [158, 159]

u = −a2 + a2
t −

1

4
+ a2

0 + t∂tF, (5.3.1)

where F is the instanton part of the NS free energy defined in appendix C. The dictionary
(5.3.1) requires a careful treatment close to the points 2a = Z, where the NS function exhibits
non-analyticity, see e.g. [160, 161]. We leave a more detailed discussion of this region for future
work.

In particular this hidden connection between Heun’s equation and supersymmetric gauge
theory makes it possible to compute the connection coefficients A and B in (5.2.10) using the
NS free energy, as done in [78].

Let
χ

(t),in
ω` (z) = (t− z)

1
2
−at + ... (5.3.2)

be the ingoing solution4 of the wave equation (5.2.14) at the horizon (z ∼ t) and let

χ
(1),±
ω` (z) = (1− z)

1
2
±a1 + ... (5.3.3)

be the two independent solutions at infinity (z ∼ 1). The connection formula reads

χ
(t),in
ω` (z) =

∑
θ′=±

(∑
σ=±

M−σ(at, a; a0)M(−σ)θ′(a, a1; a∞)tσae−
σ
2
∂aF
)
t

1
2
−a0−at(1− t)at−a1

e
1
2(−∂at−θ′∂a1)Fχ

(1),θ′

ω` (z) , (5.3.4)
4Here we have chosen the ingoing solution since we are interested in computing the retarded Green’s function.

Alternatively, the advanced Green’s function can be computed by choosing the outgoing solution, resulting in
a minor modification of (5.3.5).
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where

Mθθ′(α0, α1;α2) =
Γ(−2θ′α1)

Γ
(

1
2

+ θα0 − θ′α1 + α2

) Γ(1 + 2θα0)

Γ
(

1
2

+ θα0 − θ′α1 − α2

) ,
and F is the instanton part of the NS free energy.

The exact formula for the retarded two-point function (5.2.11) then reads

GR(ω, `) =
(
1 +R2

+

)2a1 e−∂a1F

∑
σ′=±M−σ′(at, a; a0)M(−σ′)+(a, a1; a∞)tσ

′ae−
σ′
2
∂aF∑

σ=±M−σ(at, a; a0)M(−σ)−(a, a1; a∞)tσae−
σ
2
∂aF

(5.3.5)

where the parameters t, a0, at, a1, a∞, u were defined in terms of ω, ` and the mass of the
black hole µ in (5.2.15). The instanton part of the free energy F depends on all parame-
ters, F (t, a, a0, at, a1, a∞). Finally, we can eliminate a from the problem using the Matone
relation (5.3.1). In this way the right hand side of (5.3.5) is fully fixed in terms of ω, ` and µ.

Based on general grounds, GR(ω, `) should be analytic in the upper half-plane (causality),
it satisfies Im GR(ω, `) = −Im GR(−ω, `) (KMS), and finally Im GR(ω, `) ≥ 0 for ω > 0
(unitarity), see e.g. appendix B in [162]. In fact from the standard dispersive representation of
GR(ω, `) it follows that

[GR(−ω, `)]∗ = GR(ω, `), ω ∈ R. (5.3.6)

In this paper we mostly limit our analysis to ω ∈ R and it is easy to check that (5.3.5) indeed
satisfies (5.3.6). The argument for this goes as follows. First, we notice that for real ω and
`, the relevant a is either purely imaginary or purely real. Second, we notice that (5.3.5) is
invariant under the change a → ±a, a∞ → ±a∞. Finally, the instanton partition function for
real t is a real analytic function of its parameters, F ∗(a, a0, at, a1, a∞) = F (a∗, a∗0, a

∗
t , a
∗
1, a
∗
∞).

The property (5.3.6) then follows.
For the black brane, upon taking the limit (5.2.19) the result takes the form

Gbrane
R (ω, |k|) = π4a1

GR(ω, `)

(1 +R2
+)

2a1
, (5.3.7)

where GR(ω, `) is taken from (5.3.5), but ai, t, and u are now mapped to (ω,k) according to
(5.2.18). In (5.3.7) the temperature for the theory on S1 × R3 is set to 1.

The exact expressions presented above involve in a crucial way the NS free energy. As
explained in Appendix C, the NS free energy is computed as a (convergent) series expansion in
the instanton counting parameter t,

F =
∞∑
n≥1

cn(a, a0, at, a1, a∞)tn . (5.3.8)

The coefficients cn(a, a0, at, a1, a∞) in this series have a precise combinatorial definition in terms
of Young diagrams. Hence in principle we can determine all of them. Given (5.3.8) one can
straightforwardly solve the Matone relation (5.3.1) as a series in t as well.

We can also write the above equation in a compact way by using the full NS free energy
FNS, which is the sum of the instanton part F , the one-loop part F 1−loop, and the classical
term F p = −2a log t. The formula becomes

GR(ω, `) = (1 +R2
+)2a1

Γ (−2a1)

Γ (2a1)

G(t, a, a0, a1, a∞, at)

G(t, a, a0,−a1, a∞, at)
(5.3.9)
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with

G(t, a, a0, a1, a∞, at) = e−
1
2
∂a1F

NS

sinh

(
∂aF

NS

2

)
. (5.3.10)

This is the typical form of the Fredholm determinant in this class of theories [163, eq. 8.12], [164,
eq. 5.6], see also [165, 166]. Note that the result for the two-point function has the following
simple property: under ∆ → 4 − ∆ we have GR → 1

GR
. This property is manifest in (5.3.9)

after noticing that under this transformation a1 → −a1. It is also expected on general grounds
because sending ∆ → 4 − ∆ switches the boundary conditions [167], so that the source and
response are interchanged.

One case where the exact Green’s function (5.3.5) becomes analytically tractable is the limit
where ` is the only large parameter. On the gauge theory side this means that the VEV of the
scalar a is much larger than all other parameters. In this limit one can use Zamolodchikov’s
formula for the Virasoro conformal blocks [168] and the AGT correspondence [69] to show that
[169]

F = a2

(
log

t

16
+ π

K(1− t)
K(t)

)
(5.3.11)

+

(
a2

1 + a2
t −

1

4

)
log(1− t)

+ 2

(
a2

0 + a2
t + a2

1 + a2
∞ −

1

4

)
log

(
2

π
K(t)

)
+O(a−2) .

Here K(t) is the complete elliptic integral of the first kind. Solving the Matone relation (5.3.1)
for a, we find

a = −(`+ 1)
√

1− 2tK(t)

π
+O(`−1). (5.3.12)

In Appendix J we use (5.3.12) to show that the imaginary part of GR is exponentially small at
large `.

Let us conclude this section with a practical comment. When doing the actual computations
we truncate the series in t at some maximal instanton number nmax. Given nmax and the
corresponding F nmax , we then solve (5.3.1) for a as a function of u perturbatively in t. This
step requires solving a linear equation at every new order in t. Finally, we plug both F nmax

and anmax(u) in (5.3.9) and evaluate Gnmax
R (ω, `). We present an example of this procedure for

nmax ≤ 7 and the case of the black brane in figure 5.1.5 We find a beautiful agreement between
our result and the direct numerical solution of the wave equation.

With the methods we used, going to higher nmax gets computationally costly rather quickly.
For example, in the case of the Nf = 4 theory that we are interested in, going beyond 5-10
instantons appears challenging on a laptop. Hence to fully exploit the power of our method
it would be important to identify the range of parameters for which GR(ω, `) can be reliably
computed with a few instantons. It would also be desirable to develop a more efficient way of
computing the NS functions (either analytically or numerically).6

5.4 Relation to the heavy-light conformal bootstrap
The thermal two-point function computed in the previous section is directly related to the four-
point correlation function of local operators 〈OHOLOLOH〉 [171, 172]. Here OL is the light or

5Alternatively, we can use (5.3.5) to compute GR(ω, a) and we can use (5.3.1) to evaluate the map `(ω, a)
(or k(ω, a)). This is possible because the dependence on spin ` (or momentum k) enters the problem only
through the parameter u, which does not appear in the exact formula (5.3.5).

6For example using TBA-like techniques as in [170] and references there.
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probe operator of dimension ∆L from the previous section,7 and OH is a heavy operator with
∆H ∼ cT that is dual to a black hole microstate, where cT parameterizes the two-point function
of canonically normalized stress tensors. For the precise relationship between µ ∼ ∆H

cT
, ∆H and

cT see e.g. [142].
More precisely, we define the four-point function as follows

G(z, z̄) ≡ 〈OH(0)OL(z, z̄)OL(1, 1)OH(∞)〉, (5.4.1)

where all operators for simplicity are taken to be real scalars. The insertion at infinity is
given by OH(∞) = limx4→∞ |x4|2∆HOH(x4). We also used conformal symmetry to put all four
operators in a two-dimensional plane with coordinate z = x1 + ix2.

We choose the normalization of operators such that in the short distance limit z, z̄ → 1 we
have

G(z, z̄) =
1

(1− z)∆L(1− z̄)∆L
+ ... . (5.4.2)

This four-point function admits an OPE expansion in various channels, see e.g. [173]. We
focus on the heavy-light channel, in which the expansion of the four-point function takes the
form

G(z, z̄) =
∑
O∆,`

λ2
H,L,O∆,`

g
∆H,L,−∆H,L

∆,` (z, z̄)

(zz̄)
1
2

(∆H+∆L)
, (5.4.3)

where ∆H,L ≡ ∆H−∆L, and λH,L,O∆,`
∈ R are the three-point functions. Finally, the expressions

for the conformal blocks g∆H,L,−∆H,L

∆,` (z, z̄) can be found for example in [174, 175].
We next consider the ∆H , cT →∞ limit of the expansion of G(z, z̄) above with µ = 160

3
∆H

cT
kept fixed. In this limit the spectrum of operators becomes effectively continuous and the
contribution of descendants is suppressed [173].8 Specializing to d = 4, we get the following
expression for the OPE expansion,

G(z, z̄) =
∞∑
`=0

∫ ∞
−∞

dω gω,`(zz̄)
ω−∆−`

2
z`+1 − z̄`+1

z − z̄
, (5.4.4)

where we introduced ω = ∆′H − ∆H , and gω,` for the product of the three-point functions
λ2
H,L,O∆H′ ,`

and the density of primaries. Thanks to unitarity we have gω,` ≥ 0 and KMS
symmetry implies that

g−ω,` = e−βωgω,` . (5.4.5)

We can now state the precise relationship between the heavy-light four-point function and
the thermal two-point function [137],

gω,` =
`+ 1

2π(∆L − 1)(∆L − 2)

Im GR(ω, `)

1− e−βω
, (5.4.6)

where β and ∆H are related in the standard way, β = ∂S(∆H)
∂∆H

. In this formula S(∆H) is
the effective density of primaries of dimension ∆H . This relation is the combination of the
eigenstate thermalization hypothesis [176, 177, 171, 172] and the standard relations between

7In this section we switch from ∆ to ∆L to make the distinction between the light and heavy operators
more obvious.

8This requires an extra assumption on which operators dominate the OPE, see e.g. the discussion in [137].
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various thermal two-point functions [162]. The factor `+ 1 originates from summing over ~m of
the spherical harmonics Y`~m, see Appendix A of [24] for details.

There is a natural limit in which the general expression (5.4.6) simplifies: it is the large spin
limit ` → ∞. As explained in detail in [136, 137], in this limit the relevant states are orbits
which are stable perturbatively in 1

`
. These states manifest themselves in GR(ω, `) as poles

(also known as quasi-normal modes) with imaginary part which is non-perturbative in spin `.
Therefore, perturbatively in `, Im GR(ω, `) effectively becomes the sum of δ(|ω| − ωn`), where
ωn` = ∆L + ` + 2n + γn` and γn` → 0 at large spin. Notice that for |ω| ∼ `, [(1 − e−βω)−1]pert

becomes a step function θ(ω), and in this way gω,` reduces at large spin to the expected sum
over heavy-light double-twist operators OH�n∂`OL .

We can summarize this as follows

gpert
ω,` = θ(ω)

`+ 1

2π(∆L − 1)(∆L − 2)
ImGpert

R (ω, `)

=
∞∑
n=0

cn`δ(ω − ωn`) , (5.4.7)

where the relation holds for all the terms which contribute as powers at large spin `, namely
1
`#
. We signified this by writing Im Gpert

R (ω, `) (see also 5.5 for a more precise definition). Here
cn` is the square of the OPE coefficients of double-twist operators. In writing (5.4.7) we also
used the fact that at fixed ω, Im GR(ω, `) is nonperturbative in spin at large `.9 We establish
this fact in Appendix J.

The large spin expansion of the heavy-light four-point function was actively explored in the
last few years [142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155]. One of the
basic observations of these works is that in d > 2 the effective expansion parameter is µ

`
d−2

2
. We

can therefore equivalently study the small µ expansion of the exact results. This is what we do
in the next section.

5.5 Small µ expansion
In the previous section we explained how to compute the dimensions and OPE data of heavy-
light double-twist operators using the exact two-point function (5.3.5). Now we would like to
carry out this procedure perturbatively in 1/`. Note that the expected perturbative parameter
is µ

`
[142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155], so that instead of

taking the large spin limit, we can equivalently consider the limit of small black holes. This is
a natural limit from the point of view of the Nekrasov-Shatashvili functions, which are defined
as a perturbative expansion in t ∼ µ for small µ.

5.5.1 Exact quantization condition and residues

In the small µ and large spin expansion, the Green’s function (5.3.5) simplifies considerably.
To see this, note that at small µ the Matone relation (5.3.1) becomes

a = ±`+ 1

2
+O(µ), (5.5.1)

where we plugged in the dictionary from Table 5.2.15. Since the Green’s function is invariant
under a → −a, it does not matter what sign we pick in (5.5.1). Choosing the minus sign

9In principle, non-perturbative in spin effects are accessible to the light-cone bootstrap [178] thanks to the
Lorentzian inversion formula [179, 180, 181]. However, such effects have not been yet explored in the context
of the heavy-light bootstrap.
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in (5.5.1), the ratio of the σ = −1 term to the σ = 1 term in both the numerator and the
denominator of (5.3.5) scales as µ`+1, which is exponentially small in spin. Neglecting this
nonperturbative correction, we find

Gpert
R (ω, `) = (1 +R2

+)2a1e−∂a1F

Γ(−2a1)Γ(1/2− a+ a1 − a∞)Γ(1/2− a+ a1 + a∞)

Γ(2a1)Γ(1/2− a− a1 − a∞)Γ(1/2− a− a1 + a∞)
. (5.5.2)

In a sense, this expression is a generalization of the semi-classical Virasoro vacuum block
[182, 183] to d = 4. Indeed, via (5.4.7) it encodes the contribution of the identity and multi-
stress tensor contributions in the light-light channel, schematically OL×OL ∼ 1 + T + T 2 + ...
. The effects non-perturbative in spin (which are intimately related to the presence of the black
hole horizon) are, on the other hand, encoded in the contribution of the double-twist operators
OL ×OL ∼ OL�n∂`OL.

We can now explicitly read off the poles and residues of (5.5.2). There are poles in the
function Γ(1/2−a+a1−a∞) at positive energies ω = ωn`, which are nothing but the dimensions
of the double-twist operators. The locations of these poles are determined by the following
quantization condition,

ωn` : n = a+ a∞ − a1 − 1/2, n ≥ 0. (5.5.3)

Geometrically this corresponds to the quantization of the quantum A-period associated to the
Seiberg-Witten geometry. The relation (5.5.3) implicitly defines the scaling dimensions of the
double-twist operators ωn,` via the black hole to gauge theory dictionary in (5.2.15), along with
the Matone relation (5.3.1). Computing the residues of the two-point function (5.5.2) and using
(5.4.7) and (5.2.18) then gives

cn` =
(`+ 1)Γ(∆ + n− 1)Γ(2a∞ − n)

Γ(∆)Γ(∆− 1)Γ(n+ 1)Γ(2a∞ − n−∆ + 2)
×

(1 +R2
+)∆−2e−∂a1F

2

(
d(a+ a∞)

dω

)−1 ∣∣∣
ω=ωn`

.

(5.5.4)

Note that, since F is defined by a power series in µ whose coefficients are rational functions, it
is straightforward to invert (5.5.3) to any desired order in µ by perturbing around the µ = 0
result. In this sense, (5.5.3) and (5.5.4) represent an exact solution for the bootstrap data.

5.5.2 Anomalous dimensions and OPE data

To organize the perturbative series, let us define

ωn` = ω
(0)
n` +

∞∑
i=1

µiγ
(i)
n` ,

cn` = c
(0)
n`

(
1 +

∞∑
i=1

µic
(i)
n`

)
.

(5.5.5)

We then plug these expansions into (5.5.3) and (5.5.2), using the dictionary in (5.2.15), the
Matone relation (5.3.1), and the definitions in Appendix C. At zeroth order in µ, we reproduce
the OPE coefficients in generalized free field theory, see e.g. [143, 153],

ω
(0)
n` = ∆ + `+ 2n , (5.5.6)

c
(0)
n` =

(`+ 1)Γ(∆ + n− 1)Γ(∆ + n+ `)

Γ(∆)Γ(∆− 1)Γ(n+ 1)Γ(n+ `+ 2)
, (5.5.7)
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namely we have the following identity
∞∑

n,`=0

c
(0)
n` (zz̄)

ω
(0)
n`
−∆−`
2

z`+1 − z̄`+1

z − z̄
=

1

(1− z)∆(1− z̄)∆
. (5.5.8)

Now let us go to first order in µ. We find

γ
(1)
n` = −∆2 + ∆(6n− 1) + 6n(n− 1)

2(`+ 1)
, (5.5.9)

c
(1)
n` =

1

2

(
3(∆− 2)− 3(∆ + 2n− 1)

`+ 1
+ (5.5.10)

(3(`+ 2n+ ∆)− 2γ1)(ψ(0)(2 + `+ n)− ψ(0)(∆ + `+ n))
)
,

where ψ(m)(x) = dm+1 log Γ(x)/dxm+1 is the polygamma function of order m. These results
agree with the light-cone bootstrap computations [153, 155, 146].

At second order O(µ2) the answers become more complicated, and are displayed explicitly
in Appendix H. Already at this order only O(1/`2) results are available in the literature, which
is the leading term in the large spin expansion. We find complete agreement with the result of
[153].

At k-th order O(µk) we find the following structure

γ
(k)
n` =

2k+1∑
j=0

R
(k)
j (n, `)∆j, (5.5.11)

where R(k)
j (n, `) are polynomials of degree k− j in n and are meromorphic functions of `. The

singularities occur at `sing ∈ Z and −k − 1 ≤ `sing ≤ k − 1. These singularities are however
spurious and occur because for ` < k it is not justified to drop the σ = −1 term when going
from (5.3.5) to (5.5.2).

For the three-point functions c(k)
n` the structure is very similar, the main difference being

that the analogs of R(k)
j (n, `) can also depend on ψ(m)(∆+n+`)−ψ(m)(2+n+`) withm ≤ k−1

5.5.3 The imaginary part of quasi-normal modes

Until now, in computing the position of the poles of GR(ω, `), we have neglected the imaginary
part, which is exponentially suppressed at large spin.10 This exponential suppression of the
imaginary part means that the large spin quasinormal modes thermalize very slowly, so they
give the leading contribution to the late time Green’s function to leading order in the 1/cT
expansion.

Let us now compute the leading behavior of the imaginary part, for which we must consider
the exact Green’s function (5.3.5). In the large spin expansion, the numerator of (5.3.5) is
finite, so the poles arise when the denominator vanishes. Therefore we must solve

0 =
∑
σ=±

M−σ(at, a; a0)M(−σ)−(a, a1, a∞)tσae−
σ
2
∂aF . (5.5.12)

We make an ansatz

Im ωn` = i
∞∑
k=1

f
(k)
n` µ

`+1/2+k, (5.5.13)

10Physically, this is related to the fact that classically stable orbits can decay quantum-mechanically due to
tunneling, see e.g. [37].
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where f (k)
n` are real. Note that the imaginary part behaves as µ` at large `, as expected from the

tunneling calculation in [137]. The first contribution to the imaginary part is at order µ`+3/2,
which is consistent with numerical evidence [184]. As shown in Appendix I, the explicit form
of the leading contribution to the imaginary part is

f
(1)
n` = − 2−4`π2

(`+ 1)2
ω

(0)
n`

Γ(∆ + n+ `)

Γ(∆ + n− 1)

Γ(n+ `+ 2)

Γ(n+ 1)Γ( `+1
2

)4
. (5.5.14)

It should be possible to check this expression using the techniques of [185]. Note that Im ωn` < 0
as expected from causality.
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Chapter 6

Conclusions and further directions

The main result of this thesis is the computation of the connection coefficients of Heun functions
and their confluences. In deriving such results, we performed a detailed study of regular and
irregular Liouville conformal blocks. In particular, we derived the structure constants involving
a class of irregular states (see appendix A.1) and the connection formulas of degenerate confor-
mal blocks that in the semiclassical limit solve the Heun equation and its confluences. Crucially
for applications, we give concrete and explicit expressions for such connection coefficients in
terms of instanton partitions functions of gauge theories which are AGT dual to Liouville CFT
in their so NS limit. In this respect, there are a number of open questions which are left for
further investigations.

• In this thesis we restricted to Heun functions. The generalization to more general Fuchsian
ODEs, and accordingly n−point conformal blocks, can be done along the same lines as
the ones we have been following. This produces explicit connection formulae for n−point
Fuchsian systems in terms of Gamma functions and Nekrasov partition functions of linear
quiver gauge theories.

• In the previous chapters we considered the class of confluences producing irregular sin-
gularities up to Poincaré rank one. This is implied by the fact that their gauge theory
description can be given in a weakly coupled frame. It would be interesting to extend our
analysis to higher rank singularities. These are related to Argyres-Douglas points in the
gauge theory.

• All our discussion involved 2nd order ODEs. By considering BPZ equations corresponding
to higher level degenerate vertices, one can extend our analysis to higher order linear
Fuchsian ODEs.

• The uplift to q-difference equations can also be considered. This corresponds to consider
q-Virasoro blocks and supersymmetric gauge theories in five dimensions [186]. This is
related to q-Painlevé equations and topological strings [187, 188].

In order to test the applicability of our previous results, in chapter 4 we applied our connec-
tion coefficients to a concrete problem: perturbations on a Kerr background. We obtained a
closed form result for the Kerr greybody factor, and gave a novel perspective on quasinormal
quantization and Love numbers of these backgrounds. Since Kerr black holes are astrophysical
objects, any new analytic result of this kind is of great interest for a variety of reasons. On
the phenomenological side this allows precise tests of general relativity and possible deviations
from it. From a different point of view, analytic control on the dynamics of astrophysical black
holes could shed new light on their intrinsic theoretical properties. To what extent, for exam-
ple, scattering off a Kerr black hole is controlled by a conformal field theory as proposed in
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[189]. The recent excitement about vanishing of Love numbers for 4d black holes proves that 50
years after its discovery we still have a lot to learn from the Teukolsky equation, and a renewed
analytic control on its solutions can help to uncover its secrets. Some open questions regarding
this problem are the following.

• In chapter 4 we derived a number of exact results, but since our main goal was to test
our novel method, most of our effort was directed in matching our new formulas with
previous computations. But our formulas extend previous result: is there something new
that we can learn?

• It is suggestive that perturbations of a Kerr background can be described in terms of a
CFT. As mentioned above, although in a very different circle of ideas, a link of holographic
type between CFT2 and Kerr black hole physics emerged in the last years since [189]. It
would be very interesting to find whether the mathematical structure behind the solution
of the Kerr black hole radiation problem we present in this thesis could have a clear
interpretation in the context of the Kerr/CFT correspondence.

• From the CFT2 perspective, the Teukolsky equation arises in the semiclassical limit of
Liouville field theory. An intriguing question to investigate is whether the quantum
corrections in CFT2 can have a physical interpretation in the black hole description. In
principle, this could be related to quantum gravitational corrections or more generally to
some deviations from General Relativity, which will affect the physical properties of the
black hole’s gravitational field.

• A further possible application of the method presented in this paper is the study of
the physics of the last stages of coalescence of compact objects with the Zerilli function
[190], see [191] for recent developments. The corresponding potential displays a fifth
order singularity which can be engineered with a higher irregular state, corresponding to
Argyres-Douglas SCFT in gauge theory [192]. Let us remark that the CFT2 methods
extend beyond the equivariant localisation results in gauge theory, making it possible to
quantitatively study higher order singularities [74].

Finally in chapter 5 we have computed the holographic thermal scalar two-point function
〈OO〉β. Via the AdS/CFT correspondence, the problem reduces to the study of wave prop-
agation on the AdS-Schwarzschild background. To solve the problem we used the connection
between the wave equation on the AdS-Schwarzschild background and Liouville CFT. The re-
sult for the two-point function for a four-dimensional holographic CFT on S1 × S3 dual to a
black hole geometry is the formula (5.3.5). For a holographic CFT on S1 × R3 dual to a black
brane geometry the result is (5.3.7). We analyzed the exact formulas numerically in differ-
ent regimes, matching and extending previous results. We also analyzed the exact formulas
numerically by truncating the instanton sum to some finite value.

This work only embarks upon an exploration of a fascinating connection between finite-
temperature correlators and supersymmetric gauge theories. There are many future directions
to explore and we end our paper with naming an obvious few.

• In chapter 5 we have restricted our analysis to d = 4 and a black hole with zero charge
and spin. It would be very interesting to generalize our analysis to general d, and to
consider spinning and charged black holes, as well as spinning and charged probes. In the
latter case, considering the two-point function of conserved currents 〈JµJν〉β and stress-
energy tensors 〈TµνTρσ〉β is particularly interesting due to their relation to transport and
hydrodynamics, see e.g. [193, 194, 195]. The corresponding stress-tensor OPE expansion
was analyzed in [196].
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• Another obvious extension is to consider thermal higher-point functions, e.g. the out-
of-time-ordered four-point function [197], as well as to study gravitational loop effects
for the two-point function [198]. In the bulk such computations correspond to going
beyond linear order, and they require knowledge of the bulk-to-boundary and bulk-to-
bulk propagators on the black hole background. In the language of [78] these are given
in terms of the Virasoro conformal blocks and via the AGT correspondence can be again
expressed in terms of the instanton partition functions.

• From the point of view of conformal bootstrap our results concern the heavy-heavy-light-
light four-point function viewed from the heavy-light channel, see section 5.4. In the
same sense the all-order formula (5.5.2) solves the light-cone bootstrap in the heavy-light
channel. Intriguing structures have been recently observed in the light-light channel [145,
147, 150], which is related to our work by crossing. It would be very interesting to bridge
the results of our work and these recent developments.

• At zero temperatures there is a simple correspondence between perturbative solutions
to crossing equations and effective field theories in AdS [133]. A similar connection was
explored in [138] in the thermal AdS phase, thanks to the fact that the relevant “unper-
turbed” finite temperature generalized free field solution is explicitly known, see e.g. [199].
An exciting problem in this context is to understand a similar connection between crossing
and effective field theories in AdS in the black hole phase. Here our exact formula pro-
vides an unperturbed seed solution, around which perturbations can be studied. It would
be very interesting to explore this possibility and more generally explore consistency of
holographic conformal field theories at finite temperatures.
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Appendix A

DOZZ factors and irregular
generalizations

A.1 Regular case

We use conventions where ∆ = Q2

4
− α2, i.e. physical range of the momentum is α ∈ iR+. The

formula proposed by DOZZ for the Liouville three-point function is then [95, 96]

〈∆1|V2(1)|∆3〉 = Cα1α2α3 =

=
Υ′b(0)Υb(Q+ 2α1)Υb(Q+ 2α2)Υb(Q+ 2α3)

Υb(
Q
2

+ α1 + α2 + α3)Υb(
Q
2

+ α1 + α2 − α3)Υb(
Q
2

+ α1 − α2 + α3)Υb(
Q
2
− α1 + α2 + α3)

.

(A.1.1)
We neglect the dependence on the cosmological constant since its value is arbitrary and is not
needed for the following discussion. We will not define the special function Υb and state all
its remarkable properties, instead we refer to [97]. The most important property for us is the
functional relation

Υb(x+ b) = γ(bx)b1−2bxΥb(x) , γ(x) =
Γ(x)

Γ(1− x)
. (A.1.2)

The normalization of the states is obtained from the three-point function by taking the operator
in the middle to be the identity operator, i.e. with ∆ = 0 which in our conventions means
α = −Q

2
. One finds

lim
ε→0

Cα1,−Q2 +ε,α2
= 2πδ(α1 − α2)Gα1 , (A.1.3)

with the two-point function Gα given by

Gα =
Υb(2α +Q)

Υb(2α)
. (A.1.4)

We use it to raise and lower indices: For example, OPE coefficients are given by

Cα1
α2α3

= G−1
α1
Cα1α2α3 . (A.1.5)

We will be interested in the case where one of the fields is the degenerate field Φ2,1 with
α2,1 = −2b+b−1

2
, corresponding to ∆2,1 = −1

2
− 3b2

4
. The fusion rules in this case impose that

only two Verma modules appear in the OPE of this field with a primary:

Φ2,1(z)|∆〉 =
∑
θ=±

z
bQ
2

+θbαCαθ
α2,1,α
|∆θ〉 (1 +O(z)) , (A.1.6)
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with

α± = α±
(
− b

2

)
, ∆± = ∆α± = ∆± bα− b2

4
. (A.1.7)

Since the degenerate field is not in the physical spectrum, i.e. α2,1 6∈ iR+, the OPE coefficients
Cαθ
α2,1,α

have to be computed by analytic continuation of the DOZZ formula. This is tricky and is
most easily performed by considering a four-point function, where the intermediate momentum
is integrated over. During the analytic continuation one picks up residues of poles that cross
the integration contour, and this in fact automatically imposes the fusion rules. In any case,
the result is [200]:

Cα+
α2,1,α

= 1 , Cα−
α2,1,α

= b2bQ γ(2bα)

γ(bQ+ 2bα)
. (A.1.8)

A.2 Rank 1

In section 3.2.2 we introduced the rank 1 irregular state, which can be given as a confluence
limit of primary operators (here we consider only the chiral half):

〈µ,Λ| ∝ lim
η→∞

t∆t−∆〈∆|Vt(t) (A.2.1)

with

∆ =
Q2

4
− α2 , α = −η + µ

2
, ∆t =

Q2

4
− α2

t , αt =
η − µ

2
, t =

η

Λ
. (A.2.2)

This reproduces the desired Ward identities for the irregular state. To determine its normaliza-
tion, we perform the collision limit on a (chiral+antichiral) three-point function, keeping track
of the DOZZ factors. Although irrelevant for the Ward identities, the signs of α, αt in (A.2.2)
are crucial now. We find

lim
η→∞

(tt̄)∆t−∆〈∆|Vt(t, t̄)|∆0〉 = (ΛΛ̄)∆0 lim
η→∞

η−2∆0C− η+µ
2
, η−µ

2
,α0
. (A.2.3)

Note that consistently with the main text, we consider the chiral and antichiral parts formally
as independent and distinguish them by letting the "complex conjugation" formally act only
on the coordinates t,Λ and not on the momenta α0, µ, η. The asymptotic behaviour of the Υb

function, valid for large imaginary x is:

log Υb

(
Q

2
+ x

)
= −1

2
∆x log ∆x +

1 +Q2

12
log ∆x +

3

2
∆x +O(x0) . (A.2.4)

We therefore find the following asymptotic behaviour of the DOZZ factor:

C− η+µ
2
, η−µ

2
,α0
∼ (−η2)∆0−µ(Q−µ) Υb(Q+ 2α0)

Υb(
Q
2

+ µ+ α0)Υb(
Q
2

+ µ− α0)
. (A.2.5)

This suggests that we get a finite limit in (320) if we substract the factor of (−η2)−µ(Q−µ) by
hand. This can also be achieved by changing the power of t that we substract in the definition
(A.2.1), but this would change the L0-action on the irregular state, which we avoid. It is
however precisely what is done in [75]. In any case, we find the following normalization of the
irregular state:

〈µ,Λ|∆0〉 = lim
η→∞

(−η2)µ(Q−µ)|t|2∆t−2∆〈∆|Vt(t, t̄)|∆0〉 = |Λ|2∆0Cµα0 , (A.2.6)

108



with normalization function

Cµα =
e−iπ∆Υb(Q+ 2α)

Υb(
Q
2

+ µ+ α)Υb(
Q
2

+ µ− α)
. (A.2.7)

The choice of the branch for the phase is consistent with the result found in B.1.
In the text we also consider a different kind of collision limit, which reproduces the OPE between
a primary operator and the irregular state. Performing this collision limit while keeping track
of the DOZZ factors, we can extract the corresponding irregular OPE coefficient. In particular,
consider the following correlation function, which we expand for large Λ:

〈µ,Λ|V1(1)|∆0〉 =

∫
dµ′Bµ′

µα1
Cµ′α0

∣∣∣∣1D(µα1 µ′ α0 ;
1

Λ

)∣∣∣∣2 . (A.2.8)

Here Bµ′
µα1

is the OPE coefficient corresponding to the OPE between the irregular state and V1,
Cµ′α0 is the normalization function defined above and 1D is just the corresponding conformal
block. Following [106], we can express an irregular three-point function equivalently as a limit
of a regular four-point function:

〈µ,Λ|V1(1)|∆0〉 = lim
η→∞

(−η2)µ(Q−µ)

∫
dµ′C

α(η)
α∞(η),α1

Cα(η),αt(η),α0×

×

∣∣∣∣∣e−(µ′−µ)Λ

(
−Λ

η

)∆1−(µ′−µ)(η−µ′)(
Λ

η

)∆∞(η)−∆t(η) (
1− η

Λ

)∆1−(µ′−µ)(η−µ′)
F

(
α1

α∞(η)
α(η)

αt(η)
α0

;
η

Λ

)∣∣∣∣∣
2

,

(A.2.9)
with

α∞(η) = −η + µ

2
, αt(η) =

η − µ
2

, α(η) = −η − µ
2
− µ′ . (A.2.10)

Several comments are in order: First, notice that in line with the definition of the irregular state
we have multiplied by the same factors of (−η2)µ(Q−µ) and

(
ΛΛ̄/η2

)∆∞(η)−∆t(η) as in (A.2.6).
Second, the remaining factors which we have put by hand are equal to 1 in the limit:

limη→∞ e
−(µ′−µ)Λ

(
−Λ

η

)∆1−(µ′−µ)(η−µ′) (
1− η

Λ

)∆1−(µ′−µ)(η−µ′)
= limη→∞ e

−(µ′−µ)Λ
(

1− Λ
η

)∆1−(µ′−µ)(η−µ′)
= 1 .

(A.2.11)
Therefore all the factors that we put by hand are the same as if we had computed (A.2.9) by
doing the OPE between V1 and |∆0〉 instead of between 〈µ,Λ| and V1. This ensures crossing
symmetry of the irregular three-point function. Furthermore, the factors inside the modulus
square in the limit give the irregular conformal block up to an overall divergence, i.e.:

e−(µ′−µ)Λ

(
−Λ

η

)∆1−(µ′−µ)(η−µ′)(
Λ

η

)∆∞(η)−∆t(η) (
1− η

Λ

)∆1−(µ′−µ)(η−µ′)
F

(
α1

α∞(η)
α(η)

αt(η)
α0

;
η

Λ

)
−→

−→ η−∆0−∆1−2µ′(µ′−µ)
1D

(
µ
α1 µ′ α0 ;

1

Λ

)
, as η →∞ .

(A.2.12)
This leaves us with

lim
η→∞

(−η2)µ(Q−µ)(η2)−∆0−∆1−2µ′(µ′−µ)C
α(η)
α∞(η),α1

Cα(η),αt(η),α0 =

=
e−iπ(∆1+2µ′(µ′−µ))Υb(Q+ 2α1)

Υb(
Q
2

+ µ′ − µ− α1)Υb(
Q
2

+ µ′ − µ+ α1)

e−iπ∆0Υb(Q+ 2α0)

Υb(
Q
2

+ µ′ + α0)Υb(
Q
2

+ µ′ − α0)
,

(A.2.13)

which remarkably has a finite limit. We recognize Cµ′α0 and therefore we can identify

Bµ′

µα1
=

e−iπ(∆1+2µ′(µ′−µ))Υb(Q+ 2α1)

Υb(
Q
2

+ µ′ − µ− α1)Υb(
Q
2

+ µ′ − µ+ α1)
. (A.2.14)
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Specializing this formula to the case when V1 is a degenerate field is again tricky and involves
analytic continuation. It is simpler to perform the collision limit again. The fusion rules now
imply that α(η) = α∞(η) ± (−b/2), i.e. µ′ = µ± = µ ± (−b/2). Performing the collision limit
using the degenerate OPE coefficients A.1.8 one finds

Bµθ
µα2,1

= e
iπ
(

1
2

+θbµ+ b2

4

)
, (A.2.15)

in agreement with the result (B.1.17).

A.3 Rank 1/2
Unfortunately, for the rank 1/2 state the situation is not as nice. It is clear that if we decouple
another mass, the normalization function Cµα will diverge badly, since there are no Υb-functions
in the numerator to compensate the divergence of the denominator. Indeed, it behaves as

Cµα =
e−iπ∆Υb(Q+ 2α)

Υb(
Q
2

+ µ+ α)Υb(
Q
2

+ µ− α)
→ const.×e3µ2

(−µ2)−
1+Q2

6
−µ2+∆e−iπ∆Υb(Q+2α) , as µ→∞ .

(A.3.1)
The constant comes from the O(x0) term in the expansion of the Υb-function (A.2.4). We
neglect it in the following/consider it substracted by hand. This suggests we define

〈Λ2|∆〉 = |Λ2|2∆Cα = lim
µ→∞

e−3µ2

(−µ2)
1+Q2

6
+µ2〈−Λ2

4µ
|∆〉 = |Λ2|2∆2−4∆e−2πi∆Υb(Q+ 2α) ,

(A.3.2)
where the factor of −1

4
is needed to reproduce the Ward identity 〈Λ2|L1 = −Λ2

4
〈Λ2|. This gives

the normalization function for the rank 1/2 state as

Cα = 2−4∆e−2πi∆Υb(Q+ 2α) , (A.3.3)

in agreement with the result (B.2.13). Since no collision limit is known that reproduces the
OPE between a primary and the rank 1/2 state, we cannot determine the corresponding OPE
coefficient in the way we did in the previous section for the rank 1 state. For the case of a
degenerate field however, we determine the OPE coefficient in Appendix B.2.
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Appendix B

Irregular OPEs

B.1 Rank 1
The form of the (chiral) OPE of a general vertex operator with the irregular state introduced
in section 3.2.2 is fixed by the Ward identities to be:

〈µ,Λ|V ∆
µ,µ′(z) =

∞∑
k=0

z2µ′(µ′−µ)−kΛ∆+2µ′(µ′−µ)e−(µ′−µ)Λz〈µ′,Λ; k| . (B.1.1)

Here V ∆
µ,µ′(z) is a vertex operator of weight ∆ which maps from the Whittaker module specified

by (µ,Λ), to the module specified by (µ′,Λ). Furthermore 〈µ′,Λ; k| are the ("generalized")
descendants of the irregular state. They take the form

〈µ′,Λ; k| =
∑

cijY Λ−i∂jΛ〈µ
′,Λ|LY , (B.1.2)

where cijY are coefficients fixed by the Ward identities and the sum runs over i, j ≥ 0 and all
Young diagrams Y such that i+ j+ |Y | = k. Furthermore we normalize 〈µ′,Λ; 0| ≡ 〈µ′,Λ|. We
then write the full (chiral+antichiral) OPE between the irregular state and a degenerate field
as

〈µ,Λ|Φ(z) =
∑
θ=±

Bµθ
µ,α2,1

∣∣∣∣∣
∞∑
k=0

eθbΛz/2Λ−θbµ+∆2,1+ b2

2 z−θbµ+ b2

2
−k

∣∣∣∣∣
2

〈µθ,Λ; k, k̄| , (B.1.3)

where Bµθ
µ,α2,1

are the corresponding irregular OPE coefficients. We have anticipated the fact
that for the OPE with the degenerate field µ′ = m± = µ± −b

2
as will be shown later from the

BPZ equation. Furthermore we now have both chiral and antichiral descendants which we label
by k and k̄, respectively.
We want to determine the irregular OPE coefficients B and the normalization function C
introduced in (3.2.12). To this end consider the correlation function

〈µ,Λ|Φ(z)|∆〉 . (B.1.4)

We can decompose it into irregular conformal blocks doing the OPE left or right as

〈µ,Λ|Φ(z)|∆〉 =
∑
θ=±

Cαθ
α2,1,α

Cµαθ

∣∣∣∣1F(µαθ α2,1

α
; Λz

)∣∣∣∣2 =
∑
θ′=±

Bµθ′
α2,1,µ

Cµθ′α

∣∣∣∣1D(µα2,1 µθ′ α;
1

Λz

)∣∣∣∣2 .
(B.1.5)

Here Cαθ
α2,1,α

is just the usual (regular) OPE coefficient given in terms of the DOZZ formula, B
is the irregular OPE coefficient to be determined, and Cµα is the normalization function of the
irregular state, to be determined also. It is defined by

〈µ,Λ|∆〉 = |Λ|2∆Cµα . (B.1.6)
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To determine B and C we use the BPZ equation(
b−2∂2

z −
1

z
∂z +

∆

z2
+
µΛ

z
− Λ2

4

)
〈µ,Λ|Φ(z)|∆〉 = 0 . (B.1.7)

This equation can be solved exactly and has the two solutions z
b2

2 Mbµ,±bα(bΛz), where M
denotes the Whittaker function. It has a simple expansion around z ∼ 0:

Mbµ,bα(bΛz) = (bΛz)
1
2

+bα (1 +O(bΛz)) . (B.1.8)

Comparing this expansion with the leading term in the OPE between Φ(z) and |∆〉 we can
identify

1F

(
µαθ

α2,1

α
; Λz

)
= Λ∆θz

b2

2 (bΛ)−
1
2
−θbαMbµ,θbα(bΛz) . (B.1.9)

On the other hand, there exist two other solutions to the BPZ equation which have a simple
expansion around z ∼ ∞, namely the Whittaker W functions W±bµ,bα(±bΛz). They have an
asymptotic expansion at ∞ given by

Wbµ,bα(bΛz) ∼ e−bΛz/2(bΛz)bµ
(
1 +O((bΛz)−1)

)
, (B.1.10)

valid in the Stokes sector |arg(bΛz)| < 3π
2
. An important fact is that this function is invariant

under α→ −α. We see that the expansion of the WhittakerW function (times the factor zb2/2)
has exactly the form of the OPE between the irregular state and the degenerate field, with

µ′ = µ± = µ±
(
− b

2

)
. (B.1.11)

(Note that with this convention, µ± corresponds to W∓bµ,bα(∓bΛz). This may seem confusing
but we like to keep the expression µ± analogous to the fusion rules with a regular state which
give α± = α± −b

2
).

Comparing the expansion of the W function with the irregular OPE (B.1.3), we can identify

1D

(
µ
α2,1 µ+ α;

1

Λz

)
= Λ∆+∆2,1e−iπbµbbµ(Λz)

b2

2 W−bµ,bα(e−iπbΛz) ,

1D

(
µ
α2,1 µ− α;

1

Λz

)
= Λ∆+∆2,1b−bµ(Λz)

b2

2 Wbµ,bα(bΛz) .

(B.1.12)

For simplicity we focus on the branch specified by−Λ = e−iπΛ and use the asymptotic expansion
(B.1.10) for both bΛz and e−iπbΛz →∞. This is valid for −π

2
< arg(bΛz) < 3π

2
. The modulus

squared has to be understood as acting by sending Λz → Λ̄z̄ and correspondingly e−iπΛz →
e+iπΛ̄z̄. Since we have assumed −π

2
< arg(bΛz) < 3π

2
, we also have −π

2
< arg(eiπbΛ̄z̄) < 3π

2
, so

all the asymptotic expansions are in their domain of validity. Similar expressions hold in the
other Stokes sectors.
We can now restate the crossing symmetry condition (B.1.5) in terms of Whittaker functions
and use the known connection formulae for them (see https://dlmf.nist.gov/13.14) to determine
the normalization function C and the OPE coefficient B. We have

Mκ,µ(z) =
Γ(1 + 2µ)

Γ
(

1
2

+ κ+ µ
)eiπ( 1

2
−κ+µ)Wκ,µ(z) +

Γ(1 + 2µ)

Γ
(

1
2
− κ+ µ

)e−iπκW−κ,µ(e−iπz) . (B.1.13)
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Plugging this into (B.1.5) using the identifications of the conformal blocks with the Whittaker
functions we obtain the condition

〈µ,Λ|Φ(z)|∆〉 = |Λ|2∆+2∆2,1+b2
∑
θ=±

b−1−2θbαCαθ
α2,1,α

CµαθΓ(1 + 2θbα)2×

×

∣∣∣∣∣ eiπ(
1
2
−bµ+θbα)

Γ
(

1
2

+ bµ+ θbα
)z b22 Wbµ,bα(bΛz) +

e−iπbµ

Γ
(

1
2
− bµ+ θbα

)z b22 W−bµ,bα(e−iπbΛz)

∣∣∣∣∣
2

=

= |Λ|2∆+2∆2,1+b2Bµ+
α2,1,µ

Cµ+α

∣∣∣e−iπbµbbµz b22 W−bµ,bα(e−iπbΛz)
∣∣∣2 +

+ |Λ|2∆+2∆2,1+b2Bµ−
α2,1,µ

Cµ−,α

∣∣∣b−bµz b22 Wbµ,bα(bΛz)
∣∣∣2 ,

(B.1.14)
where we have used the fact that Wκ,−µ(z) = Wκ,µ(z). Using the expression (A.1.8) for the
coefficients Cαθ

α2,1,α
, the cancellation of the cross-terms in the modulus squared gives the following

functional equation for Cµα:

Cµα+

Cµα−
= e−2πibαb2bQ+4bα γ(−2bα)γ

(
1
2

+ bµ+ bα
)

γ(bQ+ 2bα)γ
(

1
2

+ bµ− bα
) , (B.1.15)

which is solved in terms of the usual Υb-function:

Cµα =
e−iπ∆Υb(Q+ 2α)

Υb

(
Q
2

+ µ+ α
)

Υb

(
Q
2

+ µ− α
) , (B.1.16)

up to normalization and a periodic function of α with period b. We see however that the
minimal choice is consistent with the result obtained by the collision limit in A.2. Once we
know the expression for Cµα,we can compute the irregular OPE coefficients Bµ±

α2,1,µ
from the

diagonal terms in (B.1.14). The result is

Bµ±
α2,1,µ

= e
iπ
(

1
2
±bµ+ b2

4

)
. (B.1.17)

Again, we find that this is in agreement with the result found by the collision limit in A.2.
For completeness, let us write the connection formula for the conformal blocks F and D, which
solves the crossing symmetry constraint (B.1.5). Using the identification of the conformal blocks
with the Whittaker functions with the correct prefactors we find

bθbα1F

(
µαθ

α2,1

α
; Λz

)
=
∑
θ′=±

b−
1
2
−θ′bµNθθ′(bα, bµ)1D

(
µ
α2,1 µθ′ α;

1

Λz

)
, (B.1.18)

with irregular connection coefficients

Nθθ′(bα, bµ) =
Γ(1 + 2θbα)

Γ
(

1
2

+ θbα− θ′bµ
)eiπ( 1−θ′

2

)
( 1

2
−bµ+θbα) . (B.1.19)

The inverse relation is

b−
1
2
−θbµ

1D

(
µ
α2,1 µθ α;

1

Λz

)
=
∑
θ′=±

bθ
′bαN−1

θθ′ (bµ, bα)1F

(
µαθ′

α2,1

α
; Λz

)
, (B.1.20)

with
N−1
θθ′ (bµ, bα) =

Γ(−2θ′bα)

Γ
(

1
2

+ θbµ− θ′bα
)eiπ( 1+θ

2 )(− 1
2
−bµ−θ′bα) . (B.1.21)
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As a final remark, note that the Whittaker W -functions have a non-trivial monodromy around
∞. However, since for the correlator we considered, the monodromy around 0 and ∞ is the
same, and by construction we have no monodromy around 0, the combination of W -functions
appearing in the correlator expanded for large Λz is precisely such that the monodromy cancels.
This can be checked also purely locally by carefully using the asymptotic expansions of the W -
functions and its Stokes sectors. In particular, any other correlator involving this irregular state
will have the same asymptotic behaviour and thus the normalization function Cµα ensures also
the absence of monodromies for any other correlator.

B.2 Rank 1/2
Let us repeat the same arguments for the rank 1/2 irregular state introduced in section 3.2.3.
The (chiral) OPE between the irregular state and the degenerate field is fixed by the Ward
identities to be:

〈Λ2|ΦΛ,±(z) =
∞∑
k=0

(Λ2)−
1
4
− b

2

4 z
1
4

+ b2

2
− k

2 e±bΛ
√
z〈Λ2;

k

2
| . (B.2.1)

Here 〈Λ2; k
2
| are the ("generalized") descendants of the irregular state. They take the form

〈Λ2;
k

2
| =

∑
cijY Λ−i∂jΛ〈Λ

2|LY , (B.2.2)

where cijY are coefficients fixed by the Ward identities and the sum runs over i, j ≥ 0 and
all Young diagrams Y such that i + j + 2|Y | = k. In particular, note that only the integer
descendants (i.e. k ∈ 2Z) can contain Virasoro generators LY . Furthermore we normalize
〈Λ2; 0| ≡ 〈Λ2|. Since both z-behaviours in (B.2.1) given by ± live in the same Bessel module
specified by Λ, there is no canonical way of choosing a basis of solutions, in contrast to the
rank 1 case. This ambiguity does not affect the physical correlator, since we have to sum over
both solutions with the corresponding OPE coefficients. Changing the basis of conformal blocks
changes the OPE coefficients in a way that the physical correlator is invariant. Consider the
following correlation function involving the rank 1/2 state:

〈Λ2|Φ(z)|∆〉 . (B.2.3)

We can decompose it into conformal blocks by doing the OPE left and right:

〈Λ2|Φ(z)|∆〉 =
∑

θ=±C
αθ
α2,1,α

Cαθ

∣∣∣ 1
2
F (αθ α2,1 α; Λ

√
z)
∣∣∣2 =

∑
θ′=±Bα2,1Cα

∣∣∣ 1
2
E(θ′)

(
α2,1 α; 1

Λ
√
z

)∣∣∣2 .
(B.2.4)

Here Cα is the normalization function of the irregular state, defined by

〈Λ2|∆〉 = |Λ2|2∆Cα , (B.2.5)

which is to be determined. We also want to determine the irregular OPE coefficient Bα2,1 . To
do so, consider the BPZ equation that the correlator obeys:(

b−2∂2
z −

1

z
∂z +

∆

z2
− Λ2

4z

)
〈Λ2|Φ(z)|∆〉 = 0 . (B.2.6)

Solving this differential equation one identifies the conformal block corresponding to the ex-
pansion near 0 with a modified Bessel function:

1
2
F
(
αθ α2,1 α; Λ

√
z
)

= Γ(1 + 2θbα)Λ2∆θ

(
bΛ

2

)−2θbα

z
bQ
2 I2θbα(bΛ

√
z) . (B.2.7)
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The prefactors are fixed by looking at the OPE between Φ and |∆〉 and using the expansion of
the Bessel function:

I2θbα(bΛ
√
z) =

(bΛ
√
z/2)2θbα

Γ(1 + 2θbα)

(
1 +O(bΛ

√
z)
)
. (B.2.8)

On the other hand there are two other solutions to the BPZ equation given by the modified
Bessel functions of the second kind K2bα(±bΛ

√
z). They have a nice behaviour at ∞, given by

the asymptotic formula

K2bα(bΛ
√
z) ∼

√
π

2bΛ
√
z
e−bΛ

√
z(1 +O((bΛ

√
z)−1)) . (B.2.9)

Furthermore K2bα(bΛ
√
z) = K−2bα(bΛ

√
z). This expansion has precisely the form of the OPE

between the irregular state and the degenerate field (B.2.1). We can therefore identify the
necessary prefactors and defi1ne the irregular conformal blocks for z ∼ ∞:

1
2
E(+)

(
α2,1 α;

1

Λ
√
z

)
=

√
2b

π
e−

iπ
2 (Λ2)∆− b

2

4 z
bQ
2 K2bα(e−iπbΛ

√
z) ,

1
2
E(−)

(
α2,1 α;

1

Λ
√
z

)
=

√
2b

π
(Λ2)∆− b

2

4 z
bQ
2 K2bα(bΛ

√
z) .

(B.2.10)

We can now restate the crossing symmetry condition (B.2.4) in terms of Bessel functions and
use the known connection formulae for them (see e.g. dlmf.nist.gov/10.27) to determine the
normalization function C and the OPE coefficient Bα2,1 . We have

Iν(z) =
i

π
eiπνKν(z)− i

π
Kν(e

−iπz) . (B.2.11)

Plugging this formula into (B.2.4) using the identifications between the conformal blocks and
Bessel functions, one finds that the vanishing of the cross-terms gives the condition

Cα+

Cα−
= 2−8bαb2bQ+8bαe−4πibα γ(−2bα)

γ(bQ+ 2bα)
. (B.2.12)

We take the simplest solution, namely

Cα = 2−4∆e−2πi∆Υb(Q+ 2α) . (B.2.13)

This is in agreement with the result found in A.3. Once we have the expression for Cα, we
can compute the irregular OPE coefficients from the diagonal terms of the crossing symmetry
condition. The result is

Bα2,1 = 2b
2

e
iπbQ

2 . (B.2.14)

We see that the OPE coefficients are independent of ±, which is a reflection of the fact that we
have a symmetry rotating the basis of conformal blocks into each other and leaving the physical
correlator invariant.
For completeness, let us write also the connection formula for the irregular conformal blocks:

b2θbα
1
2
F
(
αθ α2,1 α; Λ

√
z
)

=
∑
θ′=±

b−
1
2Qθθ′(bα) 1

2
E(θ′)

(
α2,1 α;

1

Λ
√
z

)
. (B.2.15)

with irregular connection coefficients

Qθθ′(bα) =
22θbα

√
2π

Γ(1 + 2θbα)e
iπ
(

1−θ′
2

)
( 1

2
+2θbα) . (B.2.16)
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The inverse relation is

b−
1
2 1

2
E(θ)

(
α2,1 α;

1

Λ
√
z

)
=
∑
θ′=±

b2θ′bαQ−1
θθ′(bα) 1

2
F
(
αθ′ α2,1 α; Λ

√
z
)
. (B.2.17)

with irregular connection coefficients

Q−1
θθ′(bα) =

2−2θ′bα

√
2π

Γ(−2θ′bα)e−iπ(
1+θ

2 )( 1
2

+2θ′bα) . (B.2.18)

116



Appendix C

Classical conformal blocks and accessory
parameters

In this Appendix we give explicit combinatorial expressions for the classical conformal blocks
used in the main text.

C.1 The regular case

Let us start with the case of regular conformal blocks. Via the AGT correspondence [69] the
four-point regular conformal block is given by

F

(
α1

α∞
α
αt
α0

; t

)
= t∆−∆t−∆0(1− t)−2(Q

2
+α1)(Q

2
+αt)×

×
∑
~Y

t|
~Y |zvec

(
~α, ~Y

)∏
θ=±

zhyp

(
~α, ~Y , αt + θα0

)
zhyp

(
~α, ~Y , α1 + θα∞

)
,

(C.1.1)

where the sum runs over all pairs of Young diagrams (Y1, Y2). We denote the size of the pair
|~Y | = |Y1|+ |Y2|, and [100, 101]

zhyp

(
~α, ~Y , µ

)
=
∏
k=1,2

∏
(i,j)∈Yk

(
αk + µ+ b−1

(
i− 1

2

)
+ b

(
j − 1

2

))
,

zvec

(
~α, ~Y

)
=
∏

k,l=1,2

∏
(i,j)∈Yk

E−1 (αk − αl, Yk, Yl, (i, j))
∏

(i′,j′)∈Yl

(Q− E (αl − αk, Yl, Yk, (i′, j′)))−1
,

E (α, Y1, Y2, (i, j)) = α− b−1LY2((i, j)) + b (AY1((i, j)) + 1) .
(C.1.2)

Here LY ((i, j)), AY ((i, j)) denote respectively the leg-length and the arm-length of the box at
the site (i, j) of the diagram Y . If we denote a Young diagram as Y = (ν ′1 ≥ ν ′2 ≥ . . . ) and its
transpose as Y T = (ν1 ≥ ν2 ≥ . . . ), then LY and AY read

AY (i, j) = ν ′i − j , LY (i, j) = νj − i . (C.1.3)

Note that they can be negative if the box (i, j) are the coordinates of a box outside the diagram.
Also, the previous formulae has to be evaluated at ~α = (α1, α2) = (α,−α). Comparing (C.1.1)
with (3.3.24) we find the explicit expression for the classical conformal block F :

F (t) = limb→0 b
2 log

[
(1− t)−2(Q

2
+α1)(Q

2
+αt)

∑
~Y t
|~Y |zvec

(
~α, ~Y

)∏
θ=± zhyp

(
~α, ~Y , αt + θα0

)
zhyp

(
~α, ~Y , α1 + θα∞

)]
.

(C.1.4)
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Figure C.1: Arm length AỸ (s) = 4 (white circles) and leg length LY (s) = 2 (black dots) of a
box at the site s = (2, 2) for the pair of superimposed diagrams Y (solid lines) and Ỹ (dotted
lines).

This turns into a combinatorial expression of the u parameter defined as

u(0) = lim
b→0

b2t∂t logF

(
α1

α∞
α
αt
α0

; t

)
= −1

4
− a2 + a2

t + a2
0 + t∂tF (t) (C.1.5)

in terms of the intermediate momentum α. After substituting the dictionary with the Heun
equation this gives a combinatorial expression of the accessory parameter q in terms of the
Floquet exponent a = bα. Inverting this relation order by order in t allows us to compute
the connection coefficients in terms of the accessory parameter. Let us carry out explicitly a
first order computation for the sake of clarity. At one instanton the relevant pairs of Young
diagrams are ~Y = ((1), (0)) and ~Y = ((0), (1)). The various contributions give

zhyp (~α, ((1), (0)), µ) =
Q

2
+ α + µ ,

zhyp (~α, ((0), (1)), µ) =
Q

2
− α + µ ,

(C.1.6)

and since A(0)(i = 1, j = 1) = L(0)(i = 1, j = 1) = −1 and A(1)(i = 1, j = 1) = L(1)(i = 1, j =
1) = 0,

E (0, (1), (1), (i = 1, j = 1)) = b ,

E (2α, (1), (0), (i = 1, j = 1)) = Q+ 2α ,
(C.1.7)

therefore

zvec (~α, ((1), (0))) =
∏
l=1,2

E−1 (α− αl, (1), Yl, (i = 1, j = 1))
∏
k=1,2

(Q− E (α− αk, (1), Yk, (i
′ = 1, j′ = 1)))

−1

=
1

−2α (Q+ 2α)
,

zvec (~α, ((0), (1))) =
∏
l=1,2

E−1 (−α− αl, (1), Yl, (i = 1, j = 1))
∏
k=1,2

(Q− E (−α− αk, (1), Yk, (i
′ = 1, j′ = 1)))

−1

=
1

2α (Q− 2α)
.

(C.1.8)
Note that and that every time (i, j) have to run into an empty diagram, the corresponding
term contributes with 1. Finally, substituting the previous results in (C.1.4) we get

F (t) =

(
1
4
− a2 − a2

1 + a2
∞
) (

1
4
− a2 − a2

t + a2
0

)
1
2
− 2a2

t+O(t2) . (C.1.9)
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In the main text we will need the derivatives of F expressed in terms of Heun parameters. For
example,

∂atF (t) =
(4a2 − α2 + 2αβ − β2 − 2δ + δ2) (1− ε)

2− 8a2
t+O(t2) . (C.1.10)

Moreover,

u(0) = −1

4
− a2 + a2

t + a2
0 +

(
1
4
− a2 − a2

1 + a2
∞
) (

1
4
− a2 − a2

t + a2
0

)
1
2
− 2a2

t+O(t2) . (C.1.11)

Note that the relation between u(0) and a is quadratic at t = 0, therefore we will have two
solutions for a(u(0)):

a = ±
√
−1

4
− u(0) + a2

t + a2
0

(
1−

(
−1 + 2a2

0 + 2a2
1 − 2a2

∞ + 2a2
t − 2u(0)

) (
−1 + 4a2

t − 2u(0)
)

2 (−1 + 4a2
0 + 4a2

t − 4u(0)) (−1 + 2a2
0 + 2a2

t − 2u(0))
t+O(t2)

)
.

(C.1.12)
Substituting the dictionary (3.4.3) we obtain

a = ±1

2

√
(α + β − δ)2 − 4q ∓ t (δ(q(α + β + 1)− γ(αβ + q)) + (q − αβ)(2q − γ(α + β − 1)) + δ2(−q))√

(α + β − δ)2 − 4q(4q − (α + β − δ − 1)(α + β − δ + 1))
+O

(
t2
)
.

(C.1.13)
Note that that all the connection formulae near the various singularity are all symmetric under
a→ −a. The sign has to be carefully chosen only when connecting to the intermediate region.
Finally, we are in the position to expand the connection coefficients. For example, one would
have, choosing the lower sign in a,

Γ

(
1 + γ − ε

2
+ a

)
' Γ

(
1 + γ − ε−

√
−4q + (α + β − δ)2

2

)
×

×

1 +

t (δ(q(α + β + 1)− γ(αβ + q)) + (q − αβ)(2q − γ(α + β − 1)) + δ2(−q))ψ0

(
1+γ−ε−

√
−4q+(α+β−δ)2

2

)
√

(α + β − δ)2 − 4q(4q − (α + β − δ − 1)(α + β − δ + 1))

 ,

(C.1.14)
where ψ0 is the Digamma function.

C.2 The confluent case
In order to discuss the confluent classical conformal block, let us write the four-point conformal
block appearing in (3.3.39), that is

F

(
αt
α∞

α
α1

α0
;
1

t

)
= t−∆+∆1+∆0(1− t−1)−2(Q

2
+α1)(Q

2
+αt)×

×
∑
~Y

t−|
~Y |zvec

(
~α, ~Y

)∏
θ=±

zhyp

(
~α, ~Y , αt + θα∞

)
zhyp

(
~α, ~Y , α1 + θα0

)
.

(C.2.1)

Note that in the decoupling limit (3.3.45), that is

αt + α∞ = −µ , αt − α∞ = η , t =
Λ

η
, (C.2.2)

where then η →∞,

zhyp

(
~α, ~Y , αt − α∞

)
∼ (αt − α∞)2|~Y | ∼

(
Λ

t

)2|~Y |

,

zhyp

(
~α, ~Y , αt + α∞

)
= zhyp

(
~α, ~Y ,−µ

)
,

(1− t−1)2(Q
2

+α1)(Q
2

+αt) ∼ e−(Q2 +α1)Λ .

(C.2.3)

119



Therefore the confluent 3-point function (3.3.80) has the following combinatorial expression

1F

(
µα

α1

α0
; Λ

)
= Λ∆e(

Q
2

+α1)Λ∑
~Y Λ|

~Y |zvec

(
~α, ~Y

)
zhyp

(
~α, ~Y ,−µ

)∏
θ=± zhyp

(
~α, ~Y , α1 + θα0

)
.

(C.2.4)
As for the previous case, this turns into a combinatorial expression of the u parameter defined in
equation 3.3.83 in terms of the intermediate momentum a, that after substituting the dictionary
with the CHE gives a combinatorial expression for the accessory parameter in terms of the
Floquet exponent. Again, inverting this relation is useful for computing the explicit connection
coefficients. Similarly we can give an explicit expression of the classical conformal block for big
Λ appearing in (3.3.93), that is

1D

(
µ
α1 µ′ α0;

1

Λ

)
= lim

η→∞
Λ∆0+∆1+2µ′(µ′−µ)e−(µ′−µ)Λ

(
1− η

Λ

)∆1−(µ′−µ)(η−µ′)−(Q2 +α1)(Q+η−µ)

×

×
∑
~Y

( η
Λ

)|~Y |
zvec

(
~α(η), ~Y

)∏
θ=±

zhyp

(
~α(η), ~Y ,

η − µ
2

+ θα0

)
zhyp

(
~α(η), ~Y , α1 + θ

−η − µ
2

)
,

(C.2.5)
where

~α(η) =

(
−η − µ

2
− µ′, η − µ

2
+ µ′

)
. (C.2.6)

Again, this gives an explicit expression of the classical conformal block FD(L−1) recalling that

1D

(
µ
α1 µ′ α0;

1

Λ

)
= e−(µ′−µ)ΛΛ∆0+∆1+2µ′(µ′−µ)e

1
b2

(FD(L−1)+O(b2)) . (C.2.7)

C.3 The reduced confluent case

To obtain the reduced confluent classical block we decouple the momentum µ starting from
(C.2.1) as follows

Λ = −Λ1Λ2

4µ
, as µ→∞ . (C.3.1)

This gives

1
2
F

(
α
α1

α0
; Λ2

)
= Λ2∆

∑
~Y

(
Λ2

4

)|~Y |
zvec

(
~α, ~Y

)∏
θ=±

zhyp

(
~α, ~Y , α1 + θα0

)
. (C.3.2)

This gives for the classical conformal blocks

F (L2) = lim
b→0

b2 log
∑
~Y

(
Λ2

4

)|~Y |
zvec

(
~α, ~Y

)∏
θ=±

zhyp

(
~α, ~Y , α1 + θα0

)
. (C.3.3)

C.4 The doubly confluent case

Let us consider the following decoupling limit of (C.2.1):

α1 + α0 = −µ2 , α1 − α0 = η , Λ→ Λ1Λ2

η
, as η →∞ . (C.4.1)
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This gives

1F1 (µ1 α µ2,Λ1Λ2) = (Λ1Λ2)∆ e
Λ1Λ2

2

∑
~Y (Λ1Λ2)|

~Y | zvec

(
~α, ~Y

)
zhyp

(
~α, ~Y ,−µ1

)
zhyp

(
~α, ~Y ,−µ2

)
,

(C.4.2)
and

F (L1L2) = lim
b→0

b2 log

eΛ1Λ2
2

∑
~Y

(Λ1Λ2)|
~Y | zvec

(
~α, ~Y

)
zhyp

(
~α, ~Y ,−µ1

)
zhyp

(
~α, ~Y ,−µ2

) .

(C.4.3)

C.5 The reduced doubly confluent case
We now decouple µ2 in (C.4.2) as follows

Λ2 → −
Λ2

2

4µ2

, as µ2 →∞ . (C.5.1)

Again,

1F 1
2

(
µα; Λ1

Λ2
2

4

)
=
(
Λ1Λ2

2

)∆
∑
~Y

(
Λ1Λ2

2

)|~Y |
zvec

(
~α, ~Y

)
zhyp

(
~α, ~Y ,−µ

)
. (C.5.2)

Therefore the corresponding classical conformal block gives

F (L1L
2
2) = lim

b→0
b2 log

∑
~Y

(
Λ1

Λ2
2

4

)|~Y |
zvec

(
~α, ~Y

)
zhyp

(
~α, ~Y ,−µ

)
. (C.5.3)

C.6 The doubly reduced doubly confluent case
Decoupling the last momentum µ in (C.5.2) by setting

Λ1 → −
Λ2

1

4µ1

, as µ→∞ (C.6.1)

gives

1
2
F 1

2

(
α; Λ2

1Λ2
2

)
=
(
Λ2

1Λ2
2

)∆
∑
~Y

(
Λ2

1Λ2
2

16

)|~Y |
zvec

(
~α, ~Y

)
. (C.6.2)

The corresponding classical conformal block gives

F (L2
1L

2
2) = lim

b→0
b2 log

∑
~Y

(
Λ2

1Λ2
2

16

)|~Y |
zvec

(
~α, ~Y

) . (C.6.3)
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Appendix D

Combinatorial formula for the degenerate
5-point block

As for the four-point blocks in the previous Appendix, we give an explicit combinatorial ex-
pression for the degenerate 5-point conformal block introduced in section 3.3.1 via the AGT
correspondence. It can be computed as the partition function of N = 2 gauge theory with four
flavours and a surface operator, or equivalently as a quiver gauge theory with specific masses
fixed by the fusion rules of the degenerate field. Using the representation as a quiver gauge
theory we find

F

(
α1

α∞
α
αt α0θ

α2,1

α0
; t,

z

t

)
= t∆−∆t−∆0θz

bQ
2

+θbα0(1− t)−2(Q
2

+α1)(Q
2
−αt)

(
1− z

t

)−2(Q
2

+αt)(
Q
2

+α2,1)

(1− z)−2(Q
2

+α1)(Q
2

+α2,1)×

×
∑
~Y , ~W

t|
~Y |
(z
t

)| ~W |
zvec

(
~α, ~Y

)
zvec

(
~α0θ, ~W

) ∏
σ=±

zhyp

(
~α, ~Y , α1 + σα∞

)
zhyp

(
~α0θ, ~W, α2,1 + σα0

)
zbifund

(
~α, ~Y , ~α0θ, ~W ;αt

)
,

(D.0.1)
where the sum runs over two pairs of Young diagrams ~Y = (Y1, Y2) and ~W = (W1,W2). ~α0θ has
to be understood as (α0θ,−α0θ) and we recall that α2,1 = −2b+b−1

2
. Furthermore zvec and zhyp

are defined as in (C.1.2). The new ingredient is the contribution of a bifundamental, defined
as

zbifund

(
~α, ~Y , ~β, ~W ;αt

)
=

=
∏

k,l=1,2

∏
(i,j)∈Yk

[
E (αk − βl, Yk,Wl, (i, j))−

(
Q

2
+ αt

)] ∏
(i′,j′)∈Wl

[
Q− E (βl − αk,Wl, Yk, (i

′, j′))−
(
Q

2
+ αt

)]
,

(D.0.2)
with E as in (C.1.2).
Since all other conformal blocks are defined in terms of this degenerate 5-point block, the
expression (D.0.1) can be used to compute any other block. In particular one can verify
explicitly that the various confluence limits are finite.
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Appendix E

The radial and angular potentials

Both the radial and angular part of the Teukolsky equation can be written as a Schrödinger
equation:

d2ψ(z)

dz2
+ V (z)ψ(z) = 0 (E.0.1)

with potential

V (z) =
1

z2(z − 1)2

4∑
i=0

Âiz
i . (E.0.2)

For the radial part, the coefficients are given by

Âr0 =
a2(1−m2)−M2 + 4amMω(M −

√
M2 − a2) + 4M2ω2(a2 − 2M2) + 8M3

√
M2 − a2ω2

4(a2 −M2)
+

+ (is)
am
√
M2 − a2 − 2a2Mω + 2M2ω(M −

√
M2 − a2)

2(a2 −M2)
− s2

4
,

Âr1 =
4a2λ− 4M2λ+ (8amMω + 16a2Mω2 − 32M3ω2)

√
M2 − a2 + 4a4ω2 − 36a2M2ω2 + 32M4ω2

4(a2 −M2)
+

+ (is)

(
−i+

(2a2ω − am)
√
M2 − a2

a2 −M2

)
+ s2 ,

Âr2 = −λ− 5a2ω2 + 12M2ω2 − 12Mω2
√
M2 − a2 + (is)(i− 6ω

√
M2 − a2)− s2 ,

Âr3 = 8a2ω2 − 8M2ω2 + 8Mω2
√
M2 − a2 + (is)4ω

√
M2 − a2 ,

Âr4 = 4(M2 − a2)ω2 ,
(E.0.3)

while for the angular part they are

Âθ0 = −1

4
(−1 +m− s)(1 +m− s) ,

Âθ1 = c2 + s+ 2cs−ms+ s2 + λ ,

Âθ2 = −s− (c+ s)(5c+ s)− λ ,
Âθ3 = 4c(2c+ s) ,

Âθ4 = −4c2 .

(E.0.4)
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Appendix F

Conventions for boundary correlators

Here we collect our conventions for various thermal two-point functions. Let us start with the
case of the black hole. This is dual to a holographic CFT on S1 × S3, with the radius of S1

being β and the radius of S3 set to 1. We have for the retarded two-point function

iθ(t)〈[O(t, ~n),O(0, ~n′)]〉β =
1

4π(∆− 1)(∆− 2)

∫ ∞
−∞

dω e−iωt
∞∑
`=0

(`+ 1)GR(ω, `)
sin(`+ 1)θ

sin θ
,

(F.0.1)

where ~n · ~n′ = cos θ and ~n2 = ~n′2 = 1, so that ~n, ~n′ ∈ S3. GR(ω, `) is given by (5.3.5). We also
used for partial waves C(1)

` (cos θ) = sin(`+1)θ
sin θ

.
For the Euclidean two-point function we have

〈O(τ, ~n)O(0, ~n′)〉β =

∫ ∞
−∞

dω e−ωτ
∞∑
`=0

gω,`
sin(`+ 1)θ

sin θ
, 0 < τ < β, (F.0.2)

where gω,` is given in (5.4.6) and τ is the Euclidean time. KMS symmetry or invariance under
τ → β − τ holds thanks to (5.4.5). We normalize the operators such that the unit operator
contributes as e−τ∆

([1−e−τ+iθ][1−e−τ−iθ])∆ . The Wightman function can be obtained through Wick
rotation by taking τ → ε+ it and then ε→ 0.

For the black brane, or holographic CFT on S1 × Rd−1 with the radius of S1 set to 1, we
have for the retarded two-point function

iθ(t)〈[O(t,x),O(0, 0)]〉β=1 =
1

(4π)2(∆− 1)(∆− 2)

∫ ∞
−∞

dω e−iωt
∫ ∞
−∞

d3k eik·xGbrane
R (ω,k).

(F.0.3)

Gbrane
R (ω,k) is given by (5.3.7).
For the Euclidean two-point function we have

〈O(τ,x)O(0, 0)〉β=1 =
1

4π

∫ ∞
−∞

dω e−ωτ
∫ ∞
−∞

d3k eik·xgω,k, 0 < τ < 1, (F.0.4)

where τ is the Euclidean time and gω,k is given by (G.0.2). We normalize operators such that
the unit operator contributes as 1

(τ2+x2)∆ . KMS symmetry or invariance under τ → 1− τ holds
thanks to (G.0.5). The Wightman function can be obtained through Wick rotation by taking
τ → ε+ it and then ε→ 0.
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Appendix G

From black hole to black brane

Let us describe in a bit more detail the infinite temperature limit that takes us from the black
hole to the black brane. This is one example of the so-called macroscopic limits considered in
[173] and we simply apply the formulas of that paper to our case.

First of all, we introduce the limiting retarded two-point function as follows,

Gbrane
R (ω, |k|) = lim

T→∞

GR(ωT, |k|T )

T 4a1
, (G.0.1)

where GR(ω, |k|) is the retarded thermal two-point function for a CFT on S1×R3 with (ω, |k|)
measured in units of temperature on S1. Let us also introduce

gbrane
ω,k =

1

2π(∆− 1)(∆− 2)

Im Gbrane
R (ω, |k|)

1− e−ω
. (G.0.2)

At the level of the two-point function we consider the following limit

Gbrane(w, w̄) ≡ lim
T→∞

T−2∆G
(
z = 1− w

T
, z̄ = 1− w̄

T

)
. (G.0.3)

Plugging this formula in the OPE expansion (5.4.4) we get

Gbrane(w, w̄) = lim
T→∞

T−4

∫ ∞
0

d|k||k| × T 2

∫ ∞
−∞

dω × T gω,ke−
(w+w̄)

2
(ω−|k|) e

−w|k| − e−w̄|k|

w̄ − w
× T

=

∫ ∞
0

d|k||k|
∫ ∞
−∞

dω gω,ke
− (w+w̄)

2
(ω−|k|) e

−w|k| − e−w̄|k|

w̄ − w
, (G.0.4)

where we converted the sum to an integral,
∑

` → T
∫
d|k|.

The KMS symmetry becomes

g−ω,k = e−ωgω,k. (G.0.5)

We next consider the two-point function on S1 × Rd−1,

〈O(τ,x)O(0, 0〉β = Gbrane
(
τ + i|x|, τ − i|x|

)
. (G.0.6)

In terms of these variables we get

〈O(τ,x)O(0, 0〉β =

∫ ∞
0

d|k| |k|
∫ ∞
−∞

dω gω,ke
−ωτ sin |k||x|

|x|

=
1

4π

∫ ∞
−∞

d3k

∫ ∞
−∞

dω eik·xe−ωτgω,k. (G.0.7)
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The result is indeed invariant under KMS symmetry τ → 1− τ (recall that we have set β = 1).
By analytically continuing to Lorentzian time we see that gω,k is the Fourier transform of the
Wightman two-point function.

Note that taking the limit (G.0.3) does not change the normalization of the scalar operator,
since

lim
T→∞

T−2∆ 1(
1− (1− w

T
)
)∆(

1− (1− w̄
T

)
)∆

=
1

(ww̄)∆
=

1

(τ 2 + x2)∆
. (G.0.8)

In other words if the operator was unit-normalized it will continue to be unit-normalized after
taking the limit.

Let us finish with a few formulas for the vacuum correlators. In Fourier space, the vacuum
Wightman two-point function 〈O(t,x)O(0, 0)〉0 = 1

(−(t−iε)2+x2)∆ takes the form∫ ∞
−∞

dt d3x eiωt−ik·x
1

(−(t− iε)2 + x2)∆
= θ(ω)θ(ω2 − k2)

2π3

Γ(∆)Γ(∆− 1)

(ω2 − k2

4

)∆−2

.

(G.0.9)

It is expected that (G.0.9) controls the large ω asymptotics of the thermal correlators [201,
202].

From (G.0.7) we get that

gω,k = lim
ε→0

1

4π3

∫ ∞
−∞

d3k

∫ ∞
−∞

dω e−ik·xeitω〈O(ε+ it,x)O(0, 0)〉β. (G.0.10)

Formulas (G.0.9), (G.0.5) together with (G.0.2) imply that

lim
|ω|�1,|ω|�|k|

Im Gbrane
R (ω, |k|) ' − sin π∆

Γ(2−∆)

Γ(∆− 2)
sign(ω)

( |ω|
2

)2(∆−2)

. (G.0.11)

Via dispersion relations for Gbrane
R (ω, |k|) this leads to the following asymptotic behavior for

the real part,

lim
|ω|�1,|ω|�|k|

Re Gbrane
R (ω, |k|) ' cos π∆

Γ(2−∆)

Γ(∆− 2)

( |ω|
2

)2(∆−2)

, (G.0.12)

where everywhere we tacitly assumed that ∆ is not an integer. For the black hole case (t < 1
2
)

we get in the same way

lim
|ω|/T�1,`

GR(ω, `) ' e−πi∆sign(ω) Γ(2−∆)

Γ(∆− 2)

( |ω|
2

)2(∆−2)

. (G.0.13)

We can also derive the large ω and fixed ` behavior of the Green’s function directly from our
exact expression (5.3.5). Let us start with the black hole case. By solving the Matone relation
(5.3.1) order by order in the instanton expansion, one finds in this limit ∂aF = ic1(t)ω+O(ω0),
∂a1F = c3(t)(∆ − 2) + O(ω−1), and a = ic2(t)ω + O(ω0), with ci(t) ∈ R. Since the Green’s
function (5.3.5) is invariant under a → −a, we can choose c2 > 0 without loss of generality.
With this specification, the σ = 1 term in (5.3.5) dominates over the σ = −1 term. Expanding
the gamma functions at large ω and using the dictionary in Table 5.2.15, we find

GR(ω, `) ≈ (1 +R2
+)2a1e−∂a1F

Γ(−2a1)

Γ(2a1)
(a∞ − a)2a1(−a− a∞)2a1

≈ Γ(2−∆)

Γ(∆− 2)

(
|ω|
2

)2(∆−2)

e−πi∆sign(ω)
(
c(t)
)∆−2

, (G.0.14)
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where

c(t) =
e−c3(t)(1− t)(4c2(t)2 + 2t2 − 3t+ 1)

1− 2t
. (G.0.15)

The OPE predicts that c(t) = 1.
We do not have complete analytic control over the constants c2(t) and c3(t), but we checked

that (G.0.15) approaches 1 by computing the first few orders in the instanton expansion, see
(G.1). Hence we recover (G.0.13). The black brane results (G.0.11) and (G.0.12) correspond
to t→ 1

2
in (G.1).
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Figure G.1: c(t) defined in (G.0.15) as a function of the black hole mass (here parameterized
by t), and the maximum instanton number nmax. Based on the OPE we expect that c(t) is
independent of t and is equal to 1.
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Appendix H

O(µ2) OPE data of double-twist operators

Here we display the results for the OPE data at order µ2. These expressions are in full agreement
with [153] at order 1/`2, and provide new predictions at higher orders in 1/`. We find

γ
(2)
n` = −((∆− 1)∆ + 6(∆− 1)n+ 6n2)

2

8(`+ 1)3
− n(∆ + n− 2)(∆ + 2n− 2)2

2(`+ 2)
− (n+ 1)(∆ + n− 1)(∆ + 2n)2

2`

+
(∆− 1)∆(8∆ + 1) + 65n4 + 130(∆− 1)n3 + (3∆(27∆− 43) + 133)n2 + (∆− 1) (16∆2 + ∆ + 68)n

16(`+ 1)

− (n− 1)n(∆ + n− 3)(∆ + n− 2)

32(`+ 3)
− (n+ 1)(n+ 2)(∆ + n− 1)(∆ + n)

32(`− 1)
,

c
(2)
n` =

1

8
(∆− 2)(9∆− 44)− (2n+ 3)(∆ + n− 1)(∆ + n)

32(`− 1)
− 3(∆ + 2n− 1) ((∆− 1)∆ + 6n2 + 6(∆− 1)n)

4(`+ 1)3

+
(∆ + 2n− 1) (∆(16∆− 71) + 130n2 + 130(∆− 1)n+ 212)

32(`+ 1)
− (∆ + n− 1)(∆ + 2n)(∆ + 4n+ 2)

2`

− (n− 1)n(2∆ + 2n− 5)

32(`+ 3)
− n(∆ + 2n− 2)(3∆ + 4n− 6)

2(`+ 2)
+

1

4
(ψ(0)(n+ `+ 2)− ψ(0)(n+ `+ ∆))

×
(

9∆2 − 89∆

2
+

((∆− 1)∆ + 6n2 + 6(∆− 1)n)
2

2(`+ 1)3
− 3(∆ + 2n− 1) ((∆− 1)∆ + 6n2 + 6(∆− 1)n)

(`+ 1)2

+
(∆− 1)(∆(4∆− 73) + 36)− 65n4 − 130(∆− 1)n3 + (3(67− 27∆)∆− 493)n2 − (∆− 1)(∆(16∆− 71) + 428)n

4(`+ 1)

+ (18∆− 89)n+
2n(∆ + n− 2)(∆ + 2n− 2)2

`+ 2
+

2(n+ 1)(∆ + n− 1)(∆ + 2n)2

`
+

(n− 1)n(∆ + n− 3)(∆ + n− 2)

8(`+ 3)

+
(n+ 1)(n+ 2)(∆ + n− 1)(∆ + n)

8(`− 1)
+

(
9∆− 71

2

)
`+ 9

)
+
(
∆(∆ + 2) + 6n2 + 6n(∆ + `) + 3`2 + 3(∆ + 1)`

)2

× (ψ(0)(n+ `+ 2)− ψ(0)(n+ `+ ∆))2 + ψ(1)(n+ `+ ∆)− ψ(1)(n+ `+ 2)

8(`+ 1)2
.
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Appendix I

The imaginary part of quasi-normal
modes

In this appendix we spell out some details for the computation of (5.5.14). The condition for
a pole in GR(ω, `) follows from (5.3.5) and reads

t−2ae∂aF

(
Γ(2a)Γ

(
−a− at + 1

2

)
Γ(−2a)Γ

(
a− at + 1

2

))2

−
Γ
(
a+ a1 − a∞ + 1

2

)
Γ
(
a+ a1 + a∞ + 1

2

)
Γ
(
−a+ a1 − a∞ + 1

2

)
Γ
(
−a+ a1 + a∞ + 1

2

) = 0 .

(I.0.1)

By using the ansatz (5.5.13) as well as the dictionary in Table 5.2.15 and the perturbative
solution for the real part (5.5.5), we obtain

Im

(
Γ
(
a+ a1 − a∞ + 1

2

)
Γ
(
a+ a1 + a∞ + 1

2

)
Γ
(
−a+ a1 − a∞ + 1

2

)
Γ
(
−a+ a1 + a∞ + 1

2

)) = (I.0.2)

= µ`+1/2

(
Γ(n+ 1)Γ(n+ ∆− 1)

Γ(`+ n+ 2)Γ(`+ n+ ∆)

(−1)`

3ω
(0)
n` − 2γ

(1)
n`

f
(1)
n` +O(µ)

)

Im

t−2ae∂aF

(
Γ(2a)Γ

(
−a− at + 1

2

)
Γ(−2a)Γ

(
a− at + 1

2

))2
 = −µ`+1/2

(
Γ
(
`
2

+ 1
)4

Γ(`+ 1)2Γ(`+ 2)2

(−1)`ω
(0)
n`

3ω
(0)
n` − 2γ

(1)
n`

+O(µ)

)
,

(I.0.3)

leading to (5.5.14).

135



136



Appendix J

The large `/large k, fixed ω limit

Using the asymptotic behavior (5.3.12), we can investigate the behavior of GR at large `. We
start with the real part of GR, for which the leading behavior comes from the σ = 1 terms in
(5.3.5). Expanding at large a, we find

Re GR(ω, `) ≈ (1 +R2
+)∆−2 Γ(2−∆)

Γ(∆− 2)
e−∂a1F (−a)4a1 ≈ Γ(2−∆)

Γ(∆− 2)

(
`

2

)2(∆−2)

(J.0.1)

Note that this is independent of the temperature.
Now let us turn to the imaginary part. The leading contribution comes from expanding to

first order in the σ = −1 term in both the numerator and denominator of (5.3.5). We find

Im GR(ω, `) ≈ −
2(1 +R2

+)2a1e∂aF−∂a1F t−2a sin(2πa) sin(2πa1)

cos(2π(a− a1)) + cos(2πa∞)

×
Γ(2a)2Γ(−2a1)Γ

(
1
2
− a+ a1 − a∞

)
Γ
(

1
2
− a+ a1 + a∞

)
Γ(−2a)2Γ(2a1)Γ

(
1
2

+ a− a1 − a∞
)

Γ
(

1
2

+ a− a1 + a∞
)Im(Γ

(
1
2
− a− at

)2

Γ
(

1
2

+ a− at
)2

)

≈ −Γ(−2a1)

Γ(2a1)
(1 +R2

+)2a1e∂aF−∂a1F t−2a28a+1(−a)4a1 sin(2πa1) sinh(2π|at|), (J.0.2)

where in the second equality we took the large a limit. Plugging in the asymptotic behavior
(5.3.12) and the dictionary given in Table 5.2.18 gives

Im GR(ω, `) ≈
2π sinh(πω

√
t(1− 2t))

Γ(∆− 1)Γ(∆− 2)

(
`

2

)2(∆−2)

exp
(
−2(`+ 1)

√
1− 2tK(1− t)

)
. (J.0.3)

We see that the imaginary part decays exponentially with spin.
To compute the large |k| behavior for the black brane, we can take the infinite temperature

limit of (J.0.1) and (J.0.3). Using the definition (5.2.19) of the brane two-point function, we
find

Gbrane
R (ω, |k|) ≈ Γ(2−∆)

Γ(∆− 2)

(
|k|
2

)2(∆−2)

+ i
2π sinh

(
ω
2

)
Γ(∆− 1)Γ(∆− 2)

(
|k|
2

)2(∆−2)

exp

(
−
√
π

2

|k|
Γ
(

3
4

)2

)
.

(J.0.4)

The rate of exponential decay of the imaginary part matches the result from [103].
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