Bosonic two-ring ladders constitute an important class of atomtronic circuits, where coherent current flows not only can offer a new insight into many-body physics, but also can play the role of actual degrees of freedom, and hence allow for a viable implementation of cold-atom based devices and qubit systems. In this work, we exhaustively investigate the ground state properties and the low-lying energy spectrum of two linearly coupled Bose-Hubbard rings. We show that the competition among interactions, intra- and inter-ring hopping processes gives place to a rather rich physical scenario, where Mott-like states and (different kinds of) superfluid-like states emerge. The latter ones depend also on the (in)commensurate filling of the atoms. Our analysis, carried out within a simple analytical framework and by means of the exact numerical diagonalization of the system Hamiltonian, provides one with a rather complete characterization of the static properties of the two-ring ladder, including, but not limited to, coherence, fragmentation, correlations, and entanglement. We complement our investigation by studying how these indicators depend on the commensurability of the total number of bosons with respect to the total number of sites and show that the two stacked rings are always entangled for an odd number of atoms.

Static properties of two linearly coupled discrete circuits / Escriva, A; Richaud, A; Julia-Diaz, B; Guilleumas, M. - In: JOURNAL OF PHYSICS. B, ATOMIC MOLECULAR AND OPTICAL PHYSICS. - ISSN 0953-4075. - 54:11(2021), pp. 1-14. [10.1088/1361-6455/ac00c4]

Static properties of two linearly coupled discrete circuits

Richaud, A;
2021-01-01

Abstract

Bosonic two-ring ladders constitute an important class of atomtronic circuits, where coherent current flows not only can offer a new insight into many-body physics, but also can play the role of actual degrees of freedom, and hence allow for a viable implementation of cold-atom based devices and qubit systems. In this work, we exhaustively investigate the ground state properties and the low-lying energy spectrum of two linearly coupled Bose-Hubbard rings. We show that the competition among interactions, intra- and inter-ring hopping processes gives place to a rather rich physical scenario, where Mott-like states and (different kinds of) superfluid-like states emerge. The latter ones depend also on the (in)commensurate filling of the atoms. Our analysis, carried out within a simple analytical framework and by means of the exact numerical diagonalization of the system Hamiltonian, provides one with a rather complete characterization of the static properties of the two-ring ladder, including, but not limited to, coherence, fragmentation, correlations, and entanglement. We complement our investigation by studying how these indicators depend on the commensurability of the total number of bosons with respect to the total number of sites and show that the two stacked rings are always entangled for an odd number of atoms.
2021
54
11
1
14
115301
10.1088/1361-6455/ac00c4
https://iopscience.iop.org/article/10.1088/1361-6455/ac00c4
Escriva, A; Richaud, A; Julia-Diaz, B; Guilleumas, M
File in questo prodotto:
File Dimensione Formato  
13 - JPB Albert Escriva.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/132510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact